论文标题
通过双曲线歧管上的GPLVM将运动分类法带到连续域
Bringing motion taxonomies to continuous domains via GPLVM on hyperbolic manifolds
论文作者
论文摘要
人类运动分类法是高级分层抽象,可以分类人类如何与环境相互作用。事实证明,它们可用于分析Grasps,操纵技巧和全身支持姿势。尽管致力于设计其层次结构和基本类别,但它们的使用仍然有限。这可能归因于缺乏计算模型来填补分类法的离散层次结构与与其类别相关的高维异质数据之间的空白。为了克服这个问题,我们建议通过捕获相关层次结构的双曲线嵌入分类数据来建模。我们通过制定一种新型的高斯过程双曲潜能模型来实现这一目标,该模型通过基于图的先验在潜在空间和远距离保护背部约束上结合了分类学结构。我们在三种不同的人类运动分类法上验证了模型,以学习忠实地保留原始图形结构的双曲线嵌入。我们表明,我们的模型适当地编码了现有或新的分类类别类别中的看不见的数据,并表现优于其欧几里得和基于VAE的同行。最后,通过概念验证实验,我们表明我们的模型可用于在学习的嵌入之间生成逼真的轨迹。
Human motion taxonomies serve as high-level hierarchical abstractions that classify how humans move and interact with their environment. They have proven useful to analyse grasps, manipulation skills, and whole-body support poses. Despite substantial efforts devoted to design their hierarchy and underlying categories, their use remains limited. This may be attributed to the lack of computational models that fill the gap between the discrete hierarchical structure of the taxonomy and the high-dimensional heterogeneous data associated to its categories. To overcome this problem, we propose to model taxonomy data via hyperbolic embeddings that capture the associated hierarchical structure. We achieve this by formulating a novel Gaussian process hyperbolic latent variable model that incorporates the taxonomy structure through graph-based priors on the latent space and distance-preserving back constraints. We validate our model on three different human motion taxonomies to learn hyperbolic embeddings that faithfully preserve the original graph structure. We show that our model properly encodes unseen data from existing or new taxonomy categories, and outperforms its Euclidean and VAE-based counterparts. Finally, through proof-of-concept experiments, we show that our model may be used to generate realistic trajectories between the learned embeddings.