论文标题
清洁自我监督的MRI重建,从嘈杂的,亚采样的培训数据中使用强大的SSDU
Clean self-supervised MRI reconstruction from noisy, sub-sampled training data with Robust SSDU
论文作者
论文摘要
大多数现有的磁共振成像(MRI)重建方法具有深度学习的重建,该方法假定高信噪比(SNR)(SNR),完全采样的数据集可用于训练。但是,在许多情况下,这样的数据集是高度不切实际的甚至在技术上不可行的。最近,已经提出了许多用于MR重建的自我监督方法,仅使用子采样数据。但是,大多数此类方法,例如通过数据不采样(SSDU)进行自我监督的学习,易受测量数据中噪声引起的重建误差的影响。作为响应,我们提出了强大的SSDU,该SSDU可以通过同时估计缺失的K空间样本并降低可用样品来从嘈杂的,子采样的训练数据中恢复干净的图像。强大的SSDU将重建网络训练从数据的进一步嘈杂和亚采样版本映射到原始,单一嘈杂和子采样数据,并在推理时应用了附加的Noisier2Noise校正术语。我们还提出了一种相关的方法Noiser2full,该方法在嘈杂的,完全采样的数据时可恢复干净的图像。两种建议的方法都适用于任何网络体系结构,直接实施,并且具有与标准培训相似的计算成本。我们使用一种新颖的Denoising特异性体系结构评估了多圈FastMRI Brain数据集上的方法,并发现它通过对清洁,完全采样的数据进行培训的基准进行了竞争性。
Most existing methods for Magnetic Resonance Imaging (MRI) reconstruction with deep learning use fully supervised training, which assumes that a high signal-to-noise ratio (SNR), fully sampled dataset is available for training. In many circumstances, however, such a dataset is highly impractical or even technically infeasible to acquire. Recently, a number of self-supervised methods for MR reconstruction have been proposed, which use sub-sampled data only. However, the majority of such methods, such as Self-Supervised Learning via Data Undersampling (SSDU), are susceptible to reconstruction errors arising from noise in the measured data. In response, we propose Robust SSDU, which provably recovers clean images from noisy, sub-sampled training data by simultaneously estimating missing k-space samples and denoising the available samples. Robust SSDU trains the reconstruction network to map from a further noisy and sub-sampled version of the data to the original, singly noisy and sub-sampled data, and applies an additive Noisier2Noise correction term at inference. We also present a related method, Noiser2Full, that recovers clean images when noisy, fully sampled data is available for training. Both proposed methods are applicable to any network architecture, straight-forward to implement and have similar computational cost to standard training. We evaluate our methods on the multi-coil fastMRI brain dataset with a novel denoising-specific architecture and find that it performs competitively with a benchmark trained on clean, fully sampled data.