论文标题

联合基于图的网络,带有共享嵌入

Federated Graph-based Networks with Shared Embedding

论文作者

Yu, Tianyi, Lai, Pei, Teng, Fei

论文摘要

如今,用户隐私已成为系统开发人员无法绕过的问题,尤其是对于可以通过Internet轻松传输数据的Web应用程序的问题。值得庆幸的是,联邦学习提出了一种创新的方法,可以将数据保存在本地存储中,以培训具有分布式设备的模型。但是,与一般神经网络不同,尽管基于图的网络在分类任务和高级建议系统中取得了巨大成功,但其高性能依赖于图形结构提供的丰富上下文,当数据属性不完整时,这很容易受到影响。因此,在为基于图的网络实施联合学习时,后者成为现实的问题。知道数据嵌入是不同空间中的表示形式,我们提出了带有共享嵌入(FERAS)的基于图形的网络,该网络使用共享的嵌入数据来训练网络并避免直接共享原始数据。在这项工作中给出了FERAS收敛性的坚实理论证明。进行了不同数据集(PPI,FLICKR,REDDIT)上的实验,以显示FERAS在集中学习中的效率。最后,FERAS可以在联合学习框架中对当前基于图的模型进行培训,以解决隐私问题。

Nowadays, user privacy is becoming an issue that cannot be bypassed for system developers, especially for that of web applications where data can be easily transferred through internet. Thankfully, federated learning proposes an innovative method to train models with distributed devices while data are kept in local storage. However, unlike general neural networks, although graph-based networks have achieved great success in classification tasks and advanced recommendation system, its high performance relies on the rich context provided by a graph structure, which is vulnerable when data attributes are incomplete. Therefore, the latter becomes a realistic problem when implementing federated learning for graph-based networks. Knowing that data embedding is a representation in a different space, we propose our Federated Graph-based Networks with Shared Embedding (Feras), which uses shared embedding data to train the network and avoids the direct sharing of original data. A solid theoretical proof of the convergence of Feras is given in this work. Experiments on different datasets (PPI, Flickr, Reddit) are conducted to show the efficiency of Feras for centralized learning. Finally, Feras enables the training of current graph-based models in the federated learning framework for privacy concern.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源