论文标题
通过混合拓扑和变异方法,分数p-laplacian的阳性解决方案
Positive solutions for the fractional p-Laplacian via mixed topological and variational methods
论文作者
论文摘要
我们通过拓扑方法(单酮类型的操作者程度理论)和变异方法(临界点理论)的组合(临界点理论)来研究由退化的分数P拉普拉斯驱动的非线性,非本地差异问题。我们假设当地条件确保了子和超溶液的存在。因此,在强制性和非强化病例中,我们都证明了两种积极的解决方案。
We study a nonlinear, nonlocal Dirichlet problem driven by the degenerate fractional p-Laplacian via a combination of topological methods (degree theory for operators of monotone type) and variational methods (critical point theory). We assume local conditions ensuring the existence of sub- and supersolutions. So we prove existence of two positive solutions, in both the coercive and noncoercive cases.