论文标题

合并中子星形黑孔二进制

Measurability of neutron star tidal deformability from merging neutron star-black hole binaries

论文作者

Cho, Hee-Suk

论文摘要

中子星 - 黑色孔二元(NSBH)系统已被认为是地面重力波(GW)探测器(例如Ligo和Pirgo)的有前途的检测候选者之一。中子星(NSS)的潮汐作用印在了NSBHS和二元中子星的GW信号上。在这项工作中,我们研究了可以在NSBH信号的GW参数估计中测量参数$λ_{\ rm ns} $的准确程度。我们将NSBH源的参数范围设置为$ [4M _ {\ odot},10m _ {\ odot}] $的黑洞质量,$ [1M _ {\ odot},2m _ {\ odot}],NS质量为$ [-0.9,0.9,0.9,0.9,0.9,0.9] $ dimessionsal boot for dimessionshole $ dimessionshole $ dimessionshole $。对于在不同参数空间中分布的源的现实种群,我们使用Fisher Matrix方法计算$λ_ {\ rm ns} $ $λ_ {\ rm ns} $的测量错误($σ_{λ_{\ rm ns}} $)。特别是,我们使用先进的Ligo和宇宙探索器探测器以及使用2G(Advanced Ligo-Hanford,Advanced Ligo-Livingstone,Advanced Pirgo和Kagra)和3G(Einstein望远镜和宇宙资源管理器)网络进行多探测器分析进行单探测器分析。我们将$σ_{λ_{\ rm ns}} $的分布作为一维概率密度函数。我们的结果表明,高级Ligo和Cosmic Explorer之间的概率密度函数曲线相似,但是Cosmic Explorer可以实现$ \ sim 15 $ \ sim 15 $ +倍,总体上可以在$λ_ {\ rm ns} $中测量。对于网络探测器,概率密度函数在$σ_{λ_{\ rm ns}}}} \ sim 130 $和$ \ sim 4 $的最大值分别为2G和3G网络,并且3G网络可以实现$ \ sim $ \ sim $ \ sim 10 $ 10 $的准确度上更好。

The neutron star-black hole binary (NSBH) system has been considered one of the promising detection candidates for ground-based gravitational-wave (GW) detectors such as LIGO and Virgo. The tidal effects of neutron stars (NSs) are imprinted on the GW signals emitted from NSBHs as well as binary neutron stars. In this work, we study how accurately the parameter $λ_{\rm NS}$ can be measured in GW parameter estimation for NSBH signals. We set the parameter range for the NSBH sources to $[4M_{\odot}, 10M_{\odot}]$ for the black hole mass, $[1M_{\odot}, 2M_{\odot}]$ for the NS mass, and $[-0.9, 0.9]$ for the dimensionless black hole spin. For realistic populations of sources distributed in different parameter spaces, we calculate the measurement errors of $λ_{\rm NS}$ ($σ_{λ_{\rm NS}}$) using the Fisher matrix method. In particular, we perform a single-detector analysis using the advanced LIGO and the Cosmic Explorer detectors and a multi-detector analysis using the 2G (advanced LIGO-Hanford, advanced LIGO-Livingstone, advanced Virgo, and KAGRA) and the 3G (Einstein Telescope and Cosmic Explorer) networks. We show the distribution of $σ_{λ_{\rm NS}}$ for the population of sources as a one-dimensional probability density function. Our result shows that the probability density function curves are similar in shape between advanced LIGO and Cosmic Explorer, but Cosmic Explorer can achieve $\sim 15$ times better accuracy overall in the measurement of $λ_{\rm NS}$. In the case of the network detectors, the probability density functions are maximum at $σ_{λ_{\rm NS}} \sim 130$ and $\sim 4$ for the 2G and the 3G networks, respectively, and the 3G network can achieve $\sim 10$ times better accuracy overall.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源