论文标题

$ \ mathbb {q}的类数量的一致性(\ sqrt {\ sqrt {\ pm 2p})$ for $ p \ equiv3 $ $(\ text {mod} 4)$ a prime

Congruences on the class numbers of $\mathbb{Q}(\sqrt{\pm 2p})$ for $p\equiv3$ $(\text{mod }4)$ a prime

论文作者

Kim, Jigu, Mizuno, Yoshinori

论文摘要

对于prime $ p \ equiv 3 $ $(\ text {mod} 4)$,让$ h(-8p)$和$ h(8p)$是$ \ mathbb {q}(\ sqrt {-2p})$的班级数字,而$ \ sqrt {-2p})$和$ \ \ \ \ \ mathbb {q}(q}(q}(q}(\ sqrt})令$ψ(ξ)$为二次非理性$ξ$的Hirzebruch总和。我们表明$ h(-8p)\ equiv H(8p)\ big(ψ(2 \ sqrt {2p})/3-ψ\ big(((1+ \ sqrt {2p} {2p})/2 \ big)/2 \ big)/3 \ big)另外,我们表明$ h(-8p)\ equiv 2H(8p)ψ(2 \ sqrt {2p})/3 $ $(\ text {mod} 8)$如果$ p \ equiv 3 $ 3 $(\ text {mod} {mod} 8)$ \ big(2H(8p)ψ(2 \ sqrt {2p})/3 \ big)+4 $ $(\ text {mod} 8)$如果$ p \ equiv 7 $ $(\ text {mod} 8)$。

For a prime $p\equiv 3$ $(\text{mod }4)$, let $h(-8p)$ and $h(8p)$ be the class numbers of $\mathbb{Q}(\sqrt{-2p})$ and $\mathbb{Q}(\sqrt{2p})$, respectively. Let $Ψ(ξ)$ be the Hirzebruch sum of a quadratic irrational $ξ$. We show that $h(-8p)\equiv h(8p)\Big(Ψ(2\sqrt{2p})/3-Ψ\big((1+\sqrt{2p})/2\big)/3\Big)$ $(\text{mod }16)$. Also, we show that $h(-8p)\equiv 2h(8p)Ψ(2\sqrt{2p})/3$ $(\text{mod }8)$ if $p\equiv 3$ $(\text{mod }8)$, and $h(-8p)\equiv \big(2h(8p)Ψ(2\sqrt{2p})/3\big)+4$ $(\text{mod }8)$ if $p\equiv 7$ $(\text{mod }8)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源