论文标题

量子密码学中的单向性

One-Wayness in Quantum Cryptography

论文作者

Morimae, Tomoyuki, Yamakawa, Takashi

论文摘要

单向功能的存在是古典密码学中最基本的假设之一。另一方面,在量子世界中,有一些证据表明,即使不存在单向功能,也可以存在一些加密原语。因此,我们在量子密码学中存在以下重要的开放问题:量子密码学中最基本的要素是什么?在这个方向上,Brakerski,canetti和Qian最近定义了一个称为EFI对的概念,它们是有效生成的一对具有统计学上可区分但在计算上无法区分的状态对,并表现出了其等效性,并与一些加密原始词相等,包括承诺,包括承诺,持久转移,以及一般的多方计算计算。但是,他们的工作着重于决策类型的基础,并且不涵盖搜索类型的原语,例如量子货币和数字签名。在本文中,我们研究了单向状态发生器(OWSG)的属性,这是单向函数的量子类似物。我们首先重新审视OWSG的定义,并通过允许混合输出状态进行概括。然后我们显示以下结果。 (1)我们定义了OWSG,弱OWSG的较弱版本,并表明它们等同于OWSG。 (2)量子数字签名等效于OWSG。 (3)私钥量子货币计划(带有纯净的货币状态)意味着OWSG。 (4)量子伪一次性垫方案表示OWSG和EFI对。 (5)我们引入了无与伦比的OWSG变体,我们称之为秘密验证和统计上可隐态的OWSG,并表明它们等同于EFI对。

The existence of one-way functions is one of the most fundamental assumptions in classical cryptography. In the quantum world, on the other hand, there are evidences that some cryptographic primitives can exist even if one-way functions do not exist. We therefore have the following important open problem in quantum cryptography: What is the most fundamental element in quantum cryptography? In this direction, Brakerski, Canetti, and Qian recently defined a notion called EFI pairs, which are pairs of efficiently generatable states that are statistically distinguishable but computationally indistinguishable, and showed its equivalence with some cryptographic primitives including commitments, oblivious transfer, and general multi-party computations. However, their work focuses on decision-type primitives and does not cover search-type primitives like quantum money and digital signatures. In this paper, we study properties of one-way state generators (OWSGs), which are a quantum analogue of one-way functions. We first revisit the definition of OWSGs and generalize it by allowing mixed output states. Then we show the following results. (1) We define a weaker version of OWSGs, weak OWSGs, and show that they are equivalent to OWSGs. (2) Quantum digital signatures are equivalent to OWSGs. (3) Private-key quantum money schemes (with pure money states) imply OWSGs. (4) Quantum pseudo one-time pad schemes imply both OWSGs and EFI pairs. (5) We introduce an incomparable variant of OWSGs, which we call secretly-verifiable and statistically-invertible OWSGs, and show that they are equivalent to EFI pairs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源