论文标题

关于二次循环扩展的注释

A note on quadratic cyclotomic extensions

论文作者

Marques, Sophie, Mrema, Elizabeth

论文摘要

本文提供了两个在任意磁场上的二次循环扩展中统一根源的特征。首先,我们将映射从$ \ mathbb {n} $介绍到$ \ mathbb {n} $描述这些根,与他们在现场上的订单紧密相关。其次,对于任何prime $ p $,我们确定最大自然数$ n $,以便$ζ_{p^n} $定义了一个二次循环扩展,而在field $ f $上。无论其特征如何,这种特征在不同领域都是统一的,并且适用于奇数甚至素数。

This paper provides two characterizations of the primitive roots of unity in quadratic cyclotomic extensions over arbitrary fields. Firstly, we introduce a mapping from $\mathbb{N}$ to $\mathbb{N}$ crucial for describing these roots, closely tied to their order over the field. Secondly, for any prime $p$, we determine the maximal natural number $n$ such that $ζ_{p^n}$ defines a quadratic cyclotomic extension over the field $F$. This characterization is uniform across different fields, regardless of their characteristic, and applies to both odd and even primes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源