论文标题
快速观察FRB 20201124a的极为活跃情节:II。能量分布
FAST observations of an extremely active episode of FRB 20201124A: II. Energy Distribution
论文作者
论文摘要
我们报告了从重复快速无线电爆发(FRB)源FRB 20201124a中检测到的800多个突发的特性,其中五百米高的光圈球形射电望远镜(快速)在UTC的一个极为活跃的插曲中,在UTC 9月25日至28日,2021年在2021年中,一系列四篇论文。在该系列的第二篇论文中,我们主要关注检测到的爆发的能量分布。事件速率最初指数增加,但源活动在第4天后的24小时内停止。在第四天,在一小时内检测到542次爆发标志着到目前为止从一个FRB来源检测到的最高事件率。爆发在时频空间中具有复杂的结构。我们发现等待时间的双峰分布,可以分别以两个对数正态函数在51.22 ms和10.05 s的峰值上进行建模。与通过快速检测到的源源的先前活动发作的发射相比,第二个分布峰值时间较小,这表明该峰是由源的活性水平定义的。我们使用部分带宽和完整带宽来计算爆发的各向同性能,发现能量分布没有显着改变。我们发现,呈指数连接的破功函数可以很好地符合累积的爆发能量分布,较低和更高的能量指数分别为$ -1.22 \ pm0.01 $和$ -4.27 \ pm0.23 $。假设无线电辐射效率为$η_r= 10^{ - 4} $,则在四天内释放的爆发的各向同性能量已经在源源为$ 3.9 \ times10^{46} $ erg,超过$ \ $ \ sim $ \ sim 23 \%的可用磁极磁性磁性磁性磁性能。这挑战了引用无线电发射效率低下的磁铁模型(例如同步加速器MASER模型)。
We report the properties of more than 800 bursts detected from the repeating fast radio burst (FRB) source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio Telescope (FAST) during an extremely active episode on UTC September 25-28, 2021 in a series of four papers. In this second paper of the series, we mainly focus on the energy distribution of the detected bursts. The event rate initially increased exponentially but the source activity stopped within 24 hours after the 4th day. The detection of 542 bursts in one hour during the fourth day marked the highest event rate detected from one single FRB source so far. The bursts have complex structures in the time-frequency space. We find a double-peak distribution of the waiting time, which can be modeled with two log-normal functions peaking at 51.22 ms and 10.05 s, respectively. Compared with the emission from a previous active episode of the source detected with FAST, the second distribution peak time is smaller, suggesting that this peak is defined by the activity level of the source. We calculate the isotropic energy of the bursts using both a partial bandwidth and a full bandwidth and find that the energy distribution is not significantly changed. We find that an exponentially connected broken-power-law function can fit the cumulative burst energy distribution well, with the lower and higher-energy indices being $-1.22\pm0.01$ and $-4.27\pm0.23$, respectively. Assuming a radio radiative efficiency of $η_r = 10^{-4}$, the total isotropic energy of the bursts released during the four days when the source was active is already $3.9\times10^{46}$ erg, exceeding $\sim 23\%$ of the available magnetar dipolar magnetic energy. This challenges the magnetar models invoking an inefficient radio emission (e.g. synchrotron maser models).