论文标题

部分可观测时空混沌系统的无模型预测

Exploring Effectiveness of Explanations for Appropriate Trust: Lessons from Cognitive Psychology

论文作者

Verhagen, Ruben S., Mehrotra, Siddharth, Neerincx, Mark A., Jonker, Catholijn M., Tielman, Myrthe L.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The rapid development of Artificial Intelligence (AI) requires developers and designers of AI systems to focus on the collaboration between humans and machines. AI explanations of system behavior and reasoning are vital for effective collaboration by fostering appropriate trust, ensuring understanding, and addressing issues of fairness and bias. However, various contextual and subjective factors can influence an AI system explanation's effectiveness. This work draws inspiration from findings in cognitive psychology to understand how effective explanations can be designed. We identify four components to which explanation designers can pay special attention: perception, semantics, intent, and user & context. We illustrate the use of these four explanation components with an example of estimating food calories by combining text with visuals, probabilities with exemplars, and intent communication with both user and context in mind. We propose that the significant challenge for effective AI explanations is an additional step between explanation generation using algorithms not producing interpretable explanations and explanation communication. We believe this extra step will benefit from carefully considering the four explanation components outlined in our work, which can positively affect the explanation's effectiveness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源