论文标题
可压缩极性活性流体中的新型关键现象:动态和功能重新归一化研究
Novel critical phenomena in compressible polar active fluids: Dynamical and Functional Renormalization Group Studies
论文作者
论文摘要
主动物质不仅与生物和多样化的非平衡系统有关,而且还构成了新型物理学的肥沃基础。实际上,动态重新归一化组(DRG)分析已经发现了极性活性流体(PAFS)的许多新通用类(UCS) - 活性物质系统的原型。但是,由于DRG方法中的固有技术困难,几乎所有以前的研究都仅限于不可压缩或无限可压缩的(即马尔萨斯式)限制中的极性活性流体,而当$ε$ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - $ε$ - 综合量时,将其用于单持续水平。在这里,我们使用功能性重归其化组(FRG)方法绕过其中一些困难,并在可压缩极性活性流体中首次进行新颖的临界行为,并计算超过一环级别的相应临界指数。具体而言,我们研究了可压缩PAF的多政治点,其中临界阶命令过渡与临界相分离一致。我们首先使用DRG分析研究了关键现象,并发现它不足,因为两循环效应对于获得对缩放指数的非平凡校正很重要。然后,我们通过使用FRG分析来解决此缺陷。我们找到了三个新颖的普遍性类并获得了关键指数,然后我们用来表明其中至少两个普遍性类别是不平衡的,因为它们违反了波动散落的关系。
Active matter is not only relevant to living matter and diverse nonequilibrium systems, but also constitutes a fertile ground for novel physics. Indeed, dynamic renormalization group (DRG) analyses have uncovered many new universality classes (UCs) in polar active fluids (PAFs) - an archetype of active matter systems. However, due to the inherent technical difficulties in the DRG methodology, almost all previous studies have been restricted to polar active fluids in the incompressible or infinitely compressible (i.e., Malthusian) limits, and, when the $ε$-expansion was used in conjunction, to the one-loop level. Here, we use functional renormalization group (FRG) methods to bypass some of these difficulties and unveil for the first time novel critical behavior in compressible polar active fluids, and calculate the corresponding critical exponents beyond the one-loop level. Specifically, we investigate the multicritical point of compressible PAFs, where the critical order-disorder transition coincides with critical phase separation. We first study the critical phenomenon using a DRG analysis and find that it is insufficient since two-loop effects are important to obtain a nontrivial correction to the scaling exponents. We then remedy this defect by using a FRG analysis. We find three novel universality classes and obtain their critical exponents, which we then use to show that at least two of these universality classes are out of equilibrium because they violate the fluctuation-dissipation relation.