论文标题

朝重量对象检测系统

Towards Light Weight Object Detection System

论文作者

KC, Dharma, Dayana, Venkata Ravi Kiran, Wu, Meng-Lin, Cherukuri, Venkateswara Rao, Hwang, Hau

论文摘要

变压器是分类任务的流行选择,也是作为对象检测任务的骨干。但是,它们的高潜伏期在适应轻量化对象检测系统方面带来了挑战。我们介绍了变压器体系结构中使用的自发层的近似值。此近似值减少了分类系统的延迟,同时降低了准确性的最小损失。我们还提出了一种使用变压器编码层进行多分辨率特征融合的方法。此功能融合提高了最先进的轻质对象检测系统的准确性,而无需显着增加参数的数量。最后,我们为称为广义变压器(Gformer)的变压器体系结构提供了一个抽象,该架构可以指导新型变压器样体系结构的设计。

Transformers are a popular choice for classification tasks and as backbones for object detection tasks. However, their high latency brings challenges in their adaptation to lightweight object detection systems. We present an approximation of the self-attention layers used in the transformer architecture. This approximation reduces the latency of the classification system while incurring minimal loss in accuracy. We also present a method that uses a transformer encoder layer for multi-resolution feature fusion. This feature fusion improves the accuracy of the state-of-the-art lightweight object detection system without significantly increasing the number of parameters. Finally, we provide an abstraction for the transformer architecture called Generalized Transformer (gFormer) that can guide the design of novel transformer-like architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源