论文标题
追踪常规分数理想的Ext和Tor的理想和歼灭者,以及某些应用
Trace ideal and annihilator of Ext and Tor of regular fractional ideals, and some applications
论文作者
论文摘要
鉴于具有总数分数$ q(r)$的Noetherian Ring $ r $,以及有限生成的$ r $ -subModule $ m $ $ q(r)$,我们证明了跟踪理想和某些ext and ext and tor and tor $ m $之间的平等。结果,我们在一维当地分析中不受任何责任的案件中回答,这是本作者和R. Takahashi提出的问题。作为另一个应用程序,我们提供了Ö最近结果的替代证明。 Esentepe认为,对于一维分析未污染的Gorenstein Local Rings,Iyengar和Takahashi的共同歼灭者与指挥家的理想相吻合。
Given a commutative Noetherian ring $R$ with total ring of fractions $Q(R)$, and a finitely generated $R$-submodule $M$ of $Q(R)$, we prove an equality between trace ideal, and certain annihilator of Ext and Tor of $M$. As a consequence, we answer in one-dimensional local analytically unramified case, a question raised by the present author and R. Takahashi. As another application, we give an alternative proof of a recent result of Ö. Esentepe that for one-dimensional analytically unramified Gorenstein local rings, the cohomology annihilator of Iyengar and Takahashi coincides with the conductor ideal.