论文标题

推断具有许多L-Moments的模型参数

Inference on model parameters with many L-moments

论文作者

Alvarez, Luis, Chiann, Chang, Morettin, Pedro

论文摘要

本文使用L-Moments研究参数估计,这是具有吸引人统计特性的传统力矩的替代方法。已知通过匹配样品L-omments对模型参数的估计,在流行分布中的小样本中超过了最大似然估计(MLE)。但是,估计中使用的L弹药数量的选择仍然是临时的:研究人员通常将L-Moments的数量设置为等于参数的数量,而参数数量在较大的样本中效率低下。在本文中,我们表明,通过正确选择L摩托的数量并相应地加权这些数量,人们就能构建一个估计器,该估计值在有限样品中胜过MLE,但仍保留渐近效率。我们这样做是通过引入L-MOMENTS估计器的广义方法,并在渐近框架中得出其性能,在渐近框架中,L-MOMENTS数量随样本量而变化。然后,我们提出的方法是自动选择样品中的L-Moments数量。蒙特卡洛的证据表明,我们的方法可以在较小的样本中以及在较大的样品中工作,在较小的样品中提供均值越高的改进。我们将方法扩展到有条件模型和类半参数模型的估计。我们将后者应用于巴西乘车场平台上的支出模式。

This paper studies parameter estimation using L-moments, an alternative to traditional moments with attractive statistical properties. The estimation of model parameters by matching sample L-moments is known to outperform maximum likelihood estimation (MLE) in small samples from popular distributions. The choice of the number of L-moments used in estimation remains ad-hoc, though: researchers typically set the number of L-moments equal to the number of parameters, which is inefficient in larger samples. In this paper, we show that, by properly choosing the number of L-moments and weighting these accordingly, one is able to construct an estimator that outperforms MLE in finite samples, and yet retains asymptotic efficiency. We do so by introducing a generalised method of L-moments estimator and deriving its properties in an asymptotic framework where the number of L-moments varies with sample size. We then propose methods to automatically select the number of L-moments in a sample. Monte Carlo evidence shows our approach can provide mean-squared-error improvements over MLE in smaller samples, whilst working as well as it in larger samples. We consider extensions of our approach to the estimation of conditional models and a class semiparametric models. We apply the latter to study expenditure patterns in a ridesharing platform in Brazil.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源