论文标题
剩余的神经网络预测行星碰撞结果
Residual Neural Networks for the Prediction of Planetary Collision Outcomes
论文作者
论文摘要
在现代N体行星形成模拟的背景下,快速准确地处理碰撞仍然是一项艰巨的任务,这是由于固有的复杂碰撞过程。我们旨在通过机器学习(ML),特别是通过残留神经网络来解决这个问题。我们的模型是由数据生成过程的基本物理过程激发的,并允许灵活地预测后崩溃状态。我们证明,在预测准确性和分布外的概括方面,我们的模型的表现优于常用的碰撞处理方法,例如完美的非弹性合并和前馈神经网络。我们的模型在20/24实验中的表现优于当前最新技术。我们提供了一个由成对行星碰撞的10164平滑粒子流体动力学(SPH)模拟组成的数据集。该数据集专门适合ML研究,以改善碰撞处理的计算方面和一般研究行星碰撞。我们将ML任务提出为多任务回归问题,从而可以以端到端的方式对ML模型进行简单但有效的培训。我们的模型可以轻松地集成到现有的N体框架中,并且可以在初始条件的我们选择的参数空间中使用,即通常发生在晚期陆地行星形成期间相似大小的碰撞。
Fast and accurate treatment of collisions in the context of modern N-body planet formation simulations remains a challenging task due to inherently complex collision processes. We aim to tackle this problem with machine learning (ML), in particular via residual neural networks. Our model is motivated by the underlying physical processes of the data-generating process and allows for flexible prediction of post-collision states. We demonstrate that our model outperforms commonly used collision handling methods such as perfect inelastic merging and feed-forward neural networks in both prediction accuracy and out-of-distribution generalization. Our model outperforms the current state of the art in 20/24 experiments. We provide a dataset that consists of 10164 Smooth Particle Hydrodynamics (SPH) simulations of pairwise planetary collisions. The dataset is specifically suited for ML research to improve computational aspects for collision treatment and for studying planetary collisions in general. We formulate the ML task as a multi-task regression problem, allowing simple, yet efficient training of ML models for collision treatment in an end-to-end manner. Our models can be easily integrated into existing N-body frameworks and can be used within our chosen parameter space of initial conditions, i.e. where similar-sized collisions during late-stage terrestrial planet formation typically occur.