论文标题

使用隐藏的马尔可夫模型的Chesapeake湾流域的随机降水产生,带有各种贝叶斯参数估计

Stochastic Precipitation Generation for the Chesapeake Bay Watershed using Hidden Markov Models with Variational Bayes Parameter Estimation

论文作者

Majumder, Reetam, Neerchal, Nagaraj K., Mehta, Amita

论文摘要

随机降水发生器(SPG)是一类统计模型,它们会产生合成数据,可以模拟长时间的干燥和湿降雨拉伸。生成的降水时间序列数据用于气候预测,极端天气事件的影响评估以及水资源和农业管理。我们为每日降水数据构建一个SPG,该SPG在每个位置指定为半连续分布,一个点质量为零,无降水量和两个指数分布的混合物,用于正降水。我们的发电机作为隐藏的马尔可夫模型(HMM)获得,其中潜在的气候条件形成了状态。在2000年7月至9月的2019年7月至9月的潮湿季节,我们适合三州HMM的每日降水数据。数据是从GPM-IMERG遥感数据集获得的,并且在变异HMMS上进行现有工作以纳入半连续发射分布。鉴于数据的高空间维度,随机优化实现可以进行计算加速。使用VITERBI算法估算了基本状态的最可能序列,我们确定与所提出模型状态相关的天气状况的差异。由HMM产生的合成数据可以重现历史GPM-Imerg数据中存在的每月降水统计以及空间依赖性。

Stochastic precipitation generators (SPGs) are a class of statistical models which generate synthetic data that can simulate dry and wet rainfall stretches for long durations. Generated precipitation time series data are used in climate projections, impact assessment of extreme weather events, and water resource and agricultural management. We construct an SPG for daily precipitation data that is specified as a semi-continuous distribution at every location, with a point mass at zero for no precipitation and a mixture of two exponential distributions for positive precipitation. Our generators are obtained as hidden Markov models (HMMs) where the underlying climate conditions form the states. We fit a 3-state HMM to daily precipitation data for the Chesapeake Bay watershed in the Eastern coast of the USA for the wet season months of July to September from 2000--2019. Data is obtained from the GPM-IMERG remote sensing dataset, and existing work on variational HMMs is extended to incorporate semi-continuous emission distributions. In light of the high spatial dimension of the data, a stochastic optimization implementation allows for computational speedup. The most likely sequence of underlying states is estimated using the Viterbi algorithm, and we identify the differences in the weather regimes associated with the states of the proposed model. Synthetic data generated from the HMM can reproduce monthly precipitation statistics as well as spatial dependency present in the historical GPM-IMERG data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源