论文标题

关于参数的连续性模量的KAM定理

KAM theorem on modulus of continuity about parameter

论文作者

Tong, Zhicheng, Du, Jiayin, Li, Yong

论文摘要

在本文中,我们研究了哈密顿系统$ h \ left({y,x,ξ,\ varepsilon} \ right)= \ left \ left \ langle {ω\ left(ξ\ right),y} \ rangle + rangle + \ rangle + \ \ \ \ \ \ \ v varepsilon p p \ p \ left( $ P $是连续的$ξ$。我们证明,在某些横向条件下,持续不变的托里(Tori)具有与未扰动的托里(Tori)相同的频率,并且频率映射$ω$的凸状条件较弱。作为一个直接应用程序,当扰动$ p $保持与参数$ξ$有关的任意Hölder连续性时,我们证明了KAM定理。还考虑了无限尺寸的情况。据我们所知,这是使用Hölder类型的参数唯一连续性的系统的第一种方法。

In this paper, we study the Hamiltonian systems $ H\left( {y,x,ξ,\varepsilon } \right) = \left\langle {ω\left( ξ\right),y} \right\rangle + \varepsilon P\left( {y,x,ξ,\varepsilon } \right) $, where $ ω$ and $ P $ are continuous about $ ξ$. We prove that persistent invariant tori possess the same frequency as the unperturbed tori, under certain transversality condition and weak convexity condition for the frequency mapping $ ω$. As a direct application, we prove a KAM theorem when the perturbation $P$ holds arbitrary Hölder continuity with respect to parameter $ ξ$. The infinite dimensional case is also considered. To our knowledge, this is the first approach to the systems with the only continuity in parameter beyond Hölder's type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源