论文标题

用于建模和模拟复杂流体的科学机器学习

Scientific Machine Learning for Modeling and Simulating Complex Fluids

论文作者

Lennon, Kyle R., McKinley, Gareth H., Swan, James W.

论文摘要

流变构构方程的配方 - 与复杂流体中内部应力和变形相关的模型 - 是涉及软材料的系统工程的关键步骤。尽管数据驱动的模型在许多工程学科中为昂贵的第一原理模型提供了可访问的替代方案,并且为复杂流体的类似模型的开发滞后。表征非牛顿流体动力学的技术多样性为古典机器学习方法带来了挑战,需要统一结构化训练数据。因此,早期的机器学习组成方程在不同的变形协议或机械可观察物之间都无法移植。在这里,我们提出了一个数据驱动的框架,该框架解决了此类问题,使流变学家能够构建可学习的模型,以结合基本的物理信息,同时对有关特定实验协议或流动运动学的细节保持不可知。这些科学的机器学习模型将通用近似值纳入了物质上客观的构成框架中。通过构造,这些模型尊重Continuum Mechanics要求的物理限制,例如框架不变性和张量对称性。我们证明,该框架有助于从有限的数据中快速发现准确的本构方程,并且可以使用学习的模型来描述更多的运动学复杂流。这种固有的灵活性承认将这些“数字流体双胞胎”应用于一系列材料系统和工程问题。我们通过在多维计算流体动力学仿真中部署训练有素的模型来说明这种灵活性 - 使用任何先前开发的数据驱动的状态流动方程无法实现的任务。

The formulation of rheological constitutive equations -- models that relate internal stresses and deformations in complex fluids -- is a critical step in the engineering of systems involving soft materials. While data-driven models provide accessible alternatives to expensive first-principles models and less accurate empirical models in many engineering disciplines, the development of similar models for complex fluids has lagged. The diversity of techniques for characterizing non-Newtonian fluid dynamics creates a challenge for classical machine learning approaches, which require uniformly structured training data. Consequently, early machine learning constitutive equations have not been portable between different deformation protocols or mechanical observables. Here, we present a data-driven framework that resolves such issues, allowing rheologists to construct learnable models that incorporate essential physical information, while remaining agnostic to details regarding particular experimental protocols or flow kinematics. These scientific machine learning models incorporate a universal approximator within a materially objective tensorial constitutive framework. By construction, these models respect physical constraints, such as frame-invariance and tensor symmetry, required by continuum mechanics. We demonstrate that this framework facilitates the rapid discovery of accurate constitutive equations from limited data, and that the learned models may be used to describe more kinematically complex flows. This inherent flexibility admits the application of these 'digital fluid twins' to a range of material systems and engineering problems. We illustrate this flexibility by deploying a trained model within a multidimensional computational fluid dynamics simulation -- a task that is not achievable using any previously developed data-driven rheological equation of state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源