论文标题

在介观方案中使用原位分叉放大的Transmon Qubit读数

Transmon-qubit readout using in-situ bifurcation amplification in the mesoscopic regime

论文作者

Dassonneville, R., Ramos, T., Milchakov, V., Mori, C., Planat, L., Foroughi, F., Naud, C., Hasch-Guichard, W., Garcia-Ripoll, J. J., Roch, N., Buisson, O.

论文摘要

我们基于对量子耦合的极性仪表驱动器的非线性响应进行了跨量子量读数。在3D读数腔中,我们放置了一个由transmon值和一个通过非扰动横kerr偶联相互作用的链条模式组成的透射分子。腔夫妇仅与Ancilla模式强烈,导致杂交下极化和上极化仪。两个极性人都是无谐的和耗散的,因为它们从Ancilla继承了一个自kerr非线性$ u $,并从开放式空腔中继承了有效的衰减$κ$。通过Ancilla,Polariton仪表还将非扰动横kerr耦合固定在量子位上。这会导致高量子依赖性位移$2χ>κ,〜u $,可以通过腔体读取而不会引起purcell衰减。此外,当探测能力增加时,极化仪是非线性谐振器,目前的双重谐振和分叉行为。在这项工作中,我们将重点放在少数光制制度的低功率分叉上,称为中镜制度,当极性仪表的自我kerr和衰减速率相似时,它可以访问。通过分叉利用闩锁机制,读数仅在第一个纳米秒的第一秒内才能对transmon量子误差误差敏感。因此,我们报告了一个98.6 $ \%$的单杆保真度,而集成时间为500 ns,并且不需要外部量子限制放大器。

We demonstrate a transmon qubit readout based on the nonlinear response to a drive of polaritonic meters in-situ coupled to the qubit. Inside a 3D readout cavity, we place a transmon molecule consisting of a transmon qubit and an ancilla mode interacting via non-perturbative cross-Kerr coupling. The cavity couples strongly only to the ancilla mode, leading to hybridized lower and upper polaritonic meters. Both polaritons are anharmonic and dissipative, as they inherit a self-Kerr nonlinearity $U$ from the ancilla and effective decay $κ$ from the open cavity. Via the ancilla, the polariton meters also inherit the non-perturbative cross-Kerr coupling to the qubit. This results in a high qubit-dependent displacement $2χ> κ, ~U$ that can be read out via the cavity without causing Purcell decay. Moreover, the polariton meters, being nonlinear resonators, present bistability, and bifurcation behavior when the probing power increases. In this work, we focus on the bifurcation at low power in the few-photon regime, called the mesoscopic regime, which is accessible when the self-Kerr and decay rates of the polariton meter are similar $U\sim κ$. Capitalizing on a latching mechanism by bifurcation, the readout is sensitive to transmon qubit relaxation error only in the first tens of nanoseconds. We thus report a single-shot fidelity of 98.6 $\%$ while having an integration time of a 500 ns and no requirement for an external quantum-limited amplifier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源