论文标题

微笑:架构增强的多层次对比度学习知识图图链接预测

SMiLE: Schema-augmented Multi-level Contrastive Learning for Knowledge Graph Link Prediction

论文作者

Peng, Miao, Liu, Ben, Xie, Qianqian, Xu, Wenjie, Wang, Hua, Peng, Min

论文摘要

链接预测是推断知识图中实体之间缺少链接的任务。基于嵌入的方法通过对三元组中的关系模式进行建模来显示在解决此问题方面的有效性。但是,链接预测任务通常需要在实体社区中的上下文信息,而大多数现有的基于嵌入的方法无法捕获它。此外,在不同情况下,很少关注实体表示的多样性,这通常会导致错误的预测结果。在这种情况下,我们认为知识图的模式包含特定的上下文信息,并且对在上下文中保持实体的一致性是有益的。在本文中,我们提出了一个新型的模式增强的多层对比学习框架(Smile),以进行知识图链接预测。具体而言,我们首先利用网络架构作为样本负面的限制,并通过采用多层次对比度学习方法来产生先前的模式和上下文信息,从而预先培训我们的模型。然后,我们在单个三元组的监督下微调模型,以学习链接预测的细微表示。对四个知识图数据集的广泛实验结果,对每个组件进行了彻底的分析,证明了我们对最新基准的拟议框架的有效性。微笑的实现可在https://github.com/gknl/smile上获得。

Link prediction is the task of inferring missing links between entities in knowledge graphs. Embedding-based methods have shown effectiveness in addressing this problem by modeling relational patterns in triples. However, the link prediction task often requires contextual information in entity neighborhoods, while most existing embedding-based methods fail to capture it. Additionally, little attention is paid to the diversity of entity representations in different contexts, which often leads to false prediction results. In this situation, we consider that the schema of knowledge graph contains the specific contextual information, and it is beneficial for preserving the consistency of entities across contexts. In this paper, we propose a novel Schema-augmented Multi-level contrastive LEarning framework (SMiLE) to conduct knowledge graph link prediction. Specifically, we first exploit network schema as the prior constraint to sample negatives and pre-train our model by employing a multi-level contrastive learning method to yield both prior schema and contextual information. Then we fine-tune our model under the supervision of individual triples to learn subtler representations for link prediction. Extensive experimental results on four knowledge graph datasets with thorough analysis of each component demonstrate the effectiveness of our proposed framework against state-of-the-art baselines. The implementation of SMiLE is available at https://github.com/GKNL/SMiLE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源