论文标题
部分可观测时空混沌系统的无模型预测
Renormalization of Supersymmetric Lifshitz Sigma Models
论文作者
论文摘要
我们研究了三个维度的n = 1个超对称LIFSHITZ SIGMA模型的重新归一化。 Sigma模型在高能量Z = 2 Lifshitz点附近的空间和时间上展示了世界volume各向异性,因此WorldVolume沿着优选的时间方向赋予了叶面结构。在弯曲的背景中,目标空间几何形状配备了两个不同的指标,并且相互作用的Sigma模型是可算力的可重新分配的。在低能量下,该理论自然流向洛伦兹对称性的相对论sigma模型。在Superspace形式主义中,我们开发了一种热核法,该方法相对于双光目标空间几何形状进行了协变量,我们使用该方法评估了Lifshitz Sigma模型的一环β-功能。这项研究构成了对量子关键超级膜的彻底理解,作为候选者的高能完成。
We study the renormalization of an N = 1 supersymmetric Lifshitz sigma model in three dimensions. The sigma model exhibits worldvolume anisotropy in space and time around the high-energy z = 2 Lifshitz point, such that the worldvolume is endowed with a foliation structure along a preferred time direction. In curved backgrounds, the target-space geometry is equipped with two distinct metrics, and the interacting sigma model is power-counting renormalizable. At low energies, the theory naturally flows toward the relativistic sigma model where Lorentz symmetry emerges. In the superspace formalism, we develop a heat kernel method that is covariantized with respect to the bimetric target-space geometry, using which we evaluate the one-loop beta-functions of the Lifshitz sigma model. This study forms an essential step toward a thorough understanding of the quantum critical supermembrane as a candidate high-energy completion of the relativistic supermembrane.