论文标题

相对论气体:速度不变的洛伦兹分布

Relativistic Gas: Invariant Lorentz Distribution for the velocities

论文作者

Curado, Evaldo M. F., Cedeño, Carlos E., Soares, Ivano Damião, Tsallis, Constantino

论文摘要

1911年,尤特纳(Jüttner)提出了对速度的麦克斯韦·博尔兹曼(Maxwell-Boltzmann)分布的相对论气体的概括。在这里,我们要讨论Jüttner概率密度函数(PDF)。速度空间以及动量空间在特殊相对论中都不是平坦的。速度空间对应于Lobachevsky One,后者具有负曲率。这种曲率在PDF中诱导了Lorentz因子的特定功率,从而影响了Jüttner的归一化常数在一个,两个和三维中。此外,按照更方便的变量编写的jüttner分布在足够高的能量上呈现出来源的曲率变化,这与我们对相对论气体的计算动力学模拟不一致。但是,在一个维度上,速度符合简单的加性定律。这使我们能够通过中央限制定理获得一种新的,洛伦兹不变的pdf,其原点的曲率不会改变任何能量值,并且与我们的计算动力学模拟数据一致。此外,我们对光和重颗粒组成的一维相对论气体进行广泛的第一原则模拟。

In 1911, Jüttner proposed the generalization, for a relativistic gas, of the Maxwell-Boltzmann distribution of velocities. Here we want to discuss, among others, Jüttner probability density function (PDF). Both the velocity space and, consequently, the momentum space are not flat in special relativity. The velocity space corresponds to the Lobachevsky one, which has a negative curvature. This curvature induces a specific power for the Lorentz factor in the PDF, affecting Jüttner normalization constant in one, two, and three dimensions. Furthermore, Jüttner distribution, written in terms of a more convenient variable, the rapidity, presents a curvature change at the origin at sufficiently high energy, which does not agree with our computational dynamics simulations of a relativistic gas. However, in one dimension, the rapidity satisfies a simple additivity law. This allows us to obtain, through the Central Limit Theorem, a new, Lorentz-invariant, PDF whose curvature at the origin does not change for any energy value and which agrees with our computational dynamics simulations data. Also, we perform extensive first-principle simulations of a one-dimensional relativistic gas constituted by light and heavy particles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源