论文标题

线性收敛算法,用于旋转不变$ \ ell_1 $ -norm主成分分析

A Linearly Convergent Algorithm for Rotationally Invariant $\ell_1$-Norm Principal Component Analysis

论文作者

Zheng, Taoli, Wang, Peng, So, Anthony Man-Cho

论文摘要

为了通过离群值对数据集进行降低,$ \ ell_1 $ -Norm主成分分析(L1-PCA)作为常规PCA的典型稳健替代方案,在过去的几年中一直很有名。在这项工作中,我们考虑了旋转不变的L1-PCA,文献中几乎没有研究。为了解决这个问题,我们提出了一种近端交替的线性化最小化方法,并通过非线性外推,用于解决其两个阻滞重新印象。此外,我们表明,所提出的方法至少线性地收敛到重新计算问题的限制关键点。事实证明,在施加的条件下,这种点被证明是原始问题的关键点。最后,我们对合成数据集和实际数据集进行了数值实验,以支持我们的理论发展,并证明了方法的疗效。

To do dimensionality reduction on the datasets with outliers, the $\ell_1$-norm principal component analysis (L1-PCA) as a typical robust alternative of the conventional PCA has enjoyed great popularity over the past years. In this work, we consider a rotationally invariant L1-PCA, which is hardly studied in the literature. To tackle it, we propose a proximal alternating linearized minimization method with a nonlinear extrapolation for solving its two-block reformulation. Moreover, we show that the proposed method converges at least linearly to a limiting critical point of the reformulated problem. Such a point is proved to be a critical point of the original problem under a condition imposed on the step size. Finally, we conduct numerical experiments on both synthetic and real datasets to support our theoretical developments and demonstrate the efficacy of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源