论文标题
与排列相对应的非涉及二次操作员的家族
A family of non-Volterra quadratic operators corresponding to permutations
论文作者
论文摘要
在本文中,我们考虑了一个非volterra二次随机运算符家族,具体取决于参数$α$,并研究其轨迹行为。我们找到了有限维单纯性的非偶数二次随机操作员的所有固定点。我们构建了一些Lyapunov功能。给出了一组限制点的完整描述,我们表明此类运营商具有厄贡属性。
In the present paper we consider a family of non-Volterra quadratic stochastic operators depending on a parameter $α$ and study their trajectory behaviors. We find all fixed points for a non-Volterra quadratic stochastic operator on a finite-dimensional simplex. We construct some Lyapunov functions. A complete description of the set of limit points is given, and we show that such operators have the ergodic property.