论文标题

使用机器学习检测光伏系统中的隐藏攻击者

Detecting Hidden Attackers in Photovoltaic Systems Using Machine Learning

论文作者

Sourav, Suman, Biswas, Partha P., Chen, Binbin, Mashima, Daisuke

论文摘要

在现代智能电网中,支持传播的分布式能源(DER)系统的扩散增加了可能的网络物理攻击的表面。源自DER系统的分布式边缘设备(例如光伏(PV)系统)的攻击通常很难检测到。攻击者可能会更改PV逆变器的控制配置或各种设定点,以破坏电网,损坏设备或出于经济增益的目的。更强大的攻击者甚至可以操纵用于远程监视的PV系统计量数据,以便他可以隐藏。在本文中,我们考虑了可以同时攻击以不同控制模式运行的PV系统,并且攻击者有能力操纵单个PV总线测量以避免检测。我们表明,即使在这种情况下,仅通过汇总测量(攻击者无法操纵),机器学习(ML)技术也能够以快速而准确的方式检测攻击。我们在实验设置中使用了标准的径向分配网络以及真正的智能家居电力消耗数据和太阳能数据。我们测试了几种ML算法的性能,以检测对PV系统的攻击。我们的详细评估表明,提出的入侵检测系统(IDS)在检测对PV逆变器控制模式的攻击方面非常有效且有效。

In modern smart grids, the proliferation of communication-enabled distributed energy resource (DER) systems has increased the surface of possible cyber-physical attacks. Attacks originating from the distributed edge devices of DER system, such as photovoltaic (PV) system, is often difficult to detect. An attacker may change the control configurations or various setpoints of the PV inverters to destabilize the power grid, damage devices, or for the purpose of economic gain. A more powerful attacker may even manipulate the PV system metering data transmitted for remote monitoring, so that (s)he can remain hidden. In this paper, we consider a case where PV systems operating in different control modes can be simultaneously attacked and the attacker has the ability to manipulate individual PV bus measurements to avoid detection. We show that even in such a scenario, with just the aggregated measurements (that the attacker cannot manipulate), machine learning (ML) techniques are able to detect the attack in a fast and accurate manner. We use a standard radial distribution network, together with real smart home electricity consumption data and solar power data in our experimental setup. We test the performance of several ML algorithms to detect attacks on the PV system. Our detailed evaluations show that the proposed intrusion detection system (IDS) is highly effective and efficient in detecting attacks on PV inverter control modes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源