论文标题
GPS的计算效率初始化:广义变体方法
Computationally-efficient initialisation of GPs: The generalised variogram method
论文作者
论文摘要
我们提出了一种计算效率的策略,以初始化高斯过程(GP)的超参数,以避免计算似然函数的计算。我们的策略可以用作训练阶段,以找到最大样子(ML)训练的初始条件,也可以用作一种独立的方法来计算直接插入GP模型中的超参数值。通过ML训练GP是等于(平均而言)以最大程度地减少真实模型和学习模型之间的KL差异的事实,我们着手探索在计算上廉价的GP之间的不同指标/差异,并提供与ML相近的超参数值。实际上,我们通过将经验协方差或(傅立叶)功率谱投影到参数家族中,从而识别GP超级参数,从而提出和研究在时间和频域上运行的各种差异的度量。我们的贡献扩展了地统计学文献开发的变量函数方法,因此,它被称为广义变异图方法(GVM)。除了GVM的理论呈现外,我们还使用合成和现实世界数据的数据提供了针对不同内核的准确性,与ML的一致性以及计算复杂性的实验验证。
We present a computationally-efficient strategy to initialise the hyperparameters of a Gaussian process (GP) avoiding the computation of the likelihood function. Our strategy can be used as a pretraining stage to find initial conditions for maximum-likelihood (ML) training, or as a standalone method to compute hyperparameters values to be plugged in directly into the GP model. Motivated by the fact that training a GP via ML is equivalent (on average) to minimising the KL-divergence between the true and learnt model, we set to explore different metrics/divergences among GPs that are computationally inexpensive and provide hyperparameter values that are close to those found via ML. In practice, we identify the GP hyperparameters by projecting the empirical covariance or (Fourier) power spectrum onto a parametric family, thus proposing and studying various measures of discrepancy operating on the temporal and frequency domains. Our contribution extends the variogram method developed by the geostatistics literature and, accordingly, it is referred to as the generalised variogram method (GVM). In addition to the theoretical presentation of GVM, we provide experimental validation in terms of accuracy, consistency with ML and computational complexity for different kernels using synthetic and real-world data.