论文标题

部分可观测时空混沌系统的无模型预测

Improving efficiency of the path optimization method for a gauge theory

论文作者

Namekawa, Yusuke, Kashiwa, Kouji, Matsuda, Hidefumi, Ohnishi, Akira, Takase, Hayato

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We investigate efficiency of a gauge-covariant neural network and an approximation of the Jacobian in optimizing the complexified integration path toward evading the sign problem in lattice field theories. For the construction of the complexified integration path, we employ the path optimization method. The $2$-dimensional $\text{U}(1)$ gauge theory with the complex gauge coupling constant is used as a laboratory to evaluate the efficiency. It is found that the gauge-covariant neural network, which is composed of the Stout-like smearing, can enhance the average phase factor, as the gauge-invariant input does. For the approximation of the Jacobian, we test the most drastic case in which we perfectly drop the Jacobian during the learning process. It reduces the numerical cost of the Jacobian calculation from ${\cal O}(N^3)$ to ${\cal O}(1)$, where $N$ means the number of degrees of freedom of the theory. The path optimization using this Jacobian approximation still enhances the average phase factor at expense of a slight increase of the statistical error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源