论文标题

汇总简单卷积网络的策略

Pooling Strategies for Simplicial Convolutional Networks

论文作者

Cinque, Domenico Mattia, Battiloro, Claudio, Di Lorenzo, Paolo

论文摘要

本文的目的是引入简单卷积神经网络的合并策略。受图形合并方法的启发,我们引入了一种通用公式,该公式为一个执行的简单池层:i)简单信号的局部聚合; ii)采样集的原则选择; iii)降采样和简单拓扑的适应。然后对一般层进行定制,以设计以拓扑信号处理理论为基础的四种不同的合并策略(即Max,Top-K,自我注意力和分离的TOP-K)。此外,我们利用层次结构中提出的图层,在代表不同分辨率的数据时降低复杂性。实际数据基准(即流量和图形分类)的数值结果说明了所提出的方法相对于技术状态的优势。

The goal of this paper is to introduce pooling strategies for simplicial convolutional neural networks. Inspired by graph pooling methods, we introduce a general formulation for a simplicial pooling layer that performs: i) local aggregation of simplicial signals; ii) principled selection of sampling sets; iii) downsampling and simplicial topology adaptation. The general layer is then customized to design four different pooling strategies (i.e., max, top-k, self-attention, and separated top-k) grounded in the theory of topological signal processing. Also, we leverage the proposed layers in a hierarchical architecture that reduce complexity while representing data at different resolutions. Numerical results on real data benchmarks (i.e., flow and graph classification) illustrate the advantage of the proposed methods with respect to the state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源