论文标题
部分可观测时空混沌系统的无模型预测
Hybrid toric varieties and the non-archimedean SYZ fibration on Calabi-Yau hypersurfaces
论文作者
论文摘要
利用山本的建筑物的热带收缩,我们在投射空间中一类最大变化的超曲面的Berkovich分析上构建了非一切型SYZ纤维。我们进一步证明,在离散的对称假设下,非一切型calabi-yau公制的潜力沿着缩回的纤维持续不变。该证明利用Li对Hypersurfaces的Fermat变性的工作,并明确描述了与复杂的复合物质相关的混合空间上的复曲面。
Using a construction by Yamamoto of tropical contractions, we construct a non-archimedean SYZ fibration on the Berkovich analytification of a class of maximally degenerate hypersurfaces in projective space. We furthermore prove that under a discrete symmetry assumption, the potential for the non-archimedean Calabi-Yau metric is constant along the fibers of the retraction. The proof uses the work of Li on the Fermat degeneration of hypersurfaces, and an explicit description of toric plurisubharmonic metrics on the hybrid space associated to a complex toric variety.