论文标题

相干旋转状态的分形热力学和九国统计:通过假想时间的形式主义实现通过假想的角度旋转实现

Fractal thermodynamics and ninionic statistics of coherent rotational states: realization via imaginary angular rotation in imaginary time formalism

论文作者

Chernodub, M. N.

论文摘要

我们建议存在粒子的统计数据随其占据的量子水平变化的系统。热平衡中的职业数量取决于连续的统计参数,该参数在骨器或费米子和幽灵样统计分布之间插值。我们称这种粒子状态为``ninions'':它们与任何人不同,并且可以在3+1个维度中存在。我们建议九一个可以与一致的角动量状态相关。在欧几里得假想时间的形式主义中,可以通过旋转的边界条件实现九国统计,这与系统的刚性全局旋转相关,该条件与系统的刚性全局旋转有关。假想旋转的特征是PT对称的非铁疗法哈密顿量,并具有明确定义的热力学极限。在欧几里得晶格上的数值模拟中,可以访问热平衡中的九体物理学。对于热力学极限,实际旋转之间没有分析延续,我们提供了无关定理。九国的基态与QCD中的$θ$ -VACUUM具有相似性。九国可以产生负压和能量,类似于卡西米尔效应和宇宙暗能量。在热力学极限中,游离九元对统计参数的热能依赖性是分形。

We suggest the existence of systems in which the statistics of a particle changes with the quantum level it occupies. The occupation numbers in thermal equilibrium depend on a continuous statistical parameter that interpolates between bosonic or fermionic and ghost-like statistical distributions. We call such particle states ``ninions'': they are different from anyons and can exist in 3+1 dimensions. We suggest that ninions can be associated with coherent angular momentum states. In the Euclidean imaginary-time formalism, the ninionic statistics can be implemented via the rotwisted boundary conditions, which are associated with the rigid global rotation of the system with an imaginary angular frequency. The imaginary rotation is characterized by a PT-symmetric non-Hermitian Hamiltonian and possesses a well-defined thermodynamic limit. The physics of ninions in thermal equilibrium is accessible for numerical simulations on Euclidean lattices. We provide a no-go theorem on the absence of analytical continuation between real and imaginary rotations in the thermodynamic limit. The ground state of ninions shares similarity with the $θ$-vacuum in QCD. The ninions can produce negative pressure and energy, similar to the Casimir effect and the cosmological dark energy. In the thermodynamic limit, the dependence of thermal energy of free ninions on the statistical parameter is a fractal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源