论文标题

凯勒(Keller)解决方案的行为 - 具有通量限制和源术语的识别系统

Behavior in time of solutions of a Keller--Segel system with flux limitation and source term

论文作者

Marras, Monica, Vernier-Piro, Stella, Yokota, Tomomi

论文摘要

在本文中,我们考虑了以下抛物线式交叉扩散系统的径向对称解\ begin {equation*} \ begin {case} u_t =ΔU-\ nabla \ cdot(u f(| \ nabla v |^2)\ nabla v |^2) \int_Ωv\,dx = 0,&\\ [2mm] u(x,0)= u_0(x),&\ end {cases} \ end {eque} \ end {equication*} in $ω\ times(0,\ infty)$,$ \ ne n $ ne $ ne n $ ne $ ne $ ne \ ne \ ne \ n $ ne \ ne \ ne, $g(u)= λu - μu^k$ , $λ>0, \ μ>0$, and $ k >1$, $f(|\nabla v|^2 )= k_f(1+ |\nabla v|^2)^{-α}$, $α>0$, which describes gradient-dependent limitation of cross diffusion fluxes.功能$ m(t)$是$ u(x,t)$的时间依赖的空间平均值,即$ m(t):= \ frac 1 {|ω|} \int_ΩU(x,x,t)\,dx $。在$α$和$ k $的较小条件下,我们证明解决方案$ u(x,t)$以$ l^{\ infty} $吹出,在有限的时间下$ t_ {max {max} $,对于一些$ p> 1 $,它也以$ l^p $ -norm炸开。另外,得出了爆破时间的下限。最后,在$α$或$ k $的巨大条件下,我们证明该解决方案是全球性的并且是及时的。

In this paper we consider radially symmetric solutions of the following parabolic--elliptic cross-diffusion system \begin{equation*} \begin{cases} u_t = Δu - \nabla \cdot (u f(|\nabla v|^2 )\nabla v) + g(u), & \\[2mm] 0= Δv -m(t)+ u , \quad \int_Ωv \,dx=0, & \\[2mm] u(x,0)= u_0(x), & \end{cases} \end{equation*} in $Ω\times (0,\infty)$, with $Ω$ a ball in $\mathbb{R}^N$, $N\geq 3$, under homogeneous Neumann boundary conditions, where $g(u)= λu - μu^k$ , $λ>0, \ μ>0$, and $ k >1$, $f(|\nabla v|^2 )= k_f(1+ |\nabla v|^2)^{-α}$, $α>0$, which describes gradient-dependent limitation of cross diffusion fluxes. The function $m(t)$ is the time dependent spatial mean of $u(x,t)$ i.e. $m(t) := \frac 1 {|Ω|} \int_Ω u(x,t) \,dx$. Under smallness conditions on $α$ and $k$, we prove that the solution $u(x,t)$ blows up in $L^{\infty}$-norm at finite time $T_{max}$ and for some $p>1$ it blows up also in $L^p$-norm. In addition a lower bound of blow-up time is derived. Finally, under largeness conditions on $α$ or $k$, we prove that the solution is global and bounded in time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源