论文标题
神经重要性抽样,以快速可靠的重力波推断
Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference
论文作者
论文摘要
我们将摊销的神经后验估计与对快速,准确的重力波推断的重要性采样相结合。我们首先使用神经网络为贝叶斯后验产生一个快速的建议,然后根据潜在的可能性和先验来附加重要的权重。这提供了(1)无网络不准确的后部校正后的,(2)用于评估建议和识别失败情况的性能诊断(样本效率),以及(3)贝叶斯证据的无偏估计。通过建立这种独立的验证和纠正机制,我们解决了一些最常见的批评,以对科学推论进行深入学习。我们进行了一项大型研究,分析了Ligo和处女座与SeoBNRV4PHM和Imrphenomxphm波形模型观察到的42个二元黑洞合并。这显示了中位样品效率约为$ \ 10 \%$(比标准采样器好两个级命令),以及日志证据中统计不确定性的十倍降低。鉴于这些优势,我们期望对重力波的推断产生重大影响,并且为了使这种方法是利用科学应用中深度学习方法的范式。
We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior. This provides (1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the Bayesian evidence. By establishing this independent verification and correction mechanism we address some of the most frequent criticisms against deep learning for scientific inference. We carry out a large study analyzing 42 binary black hole mergers observed by LIGO and Virgo with the SEOBNRv4PHM and IMRPhenomXPHM waveform models. This shows a median sample efficiency of $\approx 10\%$ (two orders-of-magnitude better than standard samplers) as well as a ten-fold reduction in the statistical uncertainty in the log evidence. Given these advantages, we expect a significant impact on gravitational-wave inference, and for this approach to serve as a paradigm for harnessing deep learning methods in scientific applications.