论文标题
病理学转向分层网络,用于阿尔茨海默氏病中亚型鉴定
Pathology Steered Stratification Network for Subtype Identification in Alzheimer's Disease
论文作者
论文摘要
阿尔茨海默氏病(AD)是一种异质,多因素神经退行性疾病,其特征是β-淀粉样蛋白,病理学和神经变性疾病。在后期,没有有效的阿尔茨海默氏病治疗方法,敦促进行早期干预。但是,AD亚型识别的现有统计推断方法忽略了病理领域知识,这可能导致不足的结果,有时与基本神经系统原理不一致。将系统生物学建模与机器学习整合在一起,我们提出了一种新型的病理学分层网络(PSSN),该病理学通过反应扩散模型结合了AD病理学中已建立的域知识,在该模型中我们考虑了主要的生物标志物与沿着大脑结构网络扩散之间的非线性相互作用。经过训练在纵向多模式神经影像数据上,该生物模型预测了捕获个体进展模式的长期轨迹,填补了可用的稀疏成像数据之间的空白。然后,建立一个深层的预测神经网络,以利用时空动力学,将神经系统检查与临床谱联系起来,并单独产生亚型分配概率。我们进一步确定了通过广泛的模拟来量化亚型过渡概率的进化疾病图。我们的分层在各种临床评分的群间异质性和群内同质性方面都达到了卓越的性能。将我们的方法应用于衰老人群的丰富样本,我们确定了跨越AD光谱的六个亚型,其中每个亚型都表现出与其临床结果一致的独特生物标志物模式。 PSSN提供了有关临床治疗前症状诊断和实际指导的见解,这些诊断和实际指导可能会进一步推广到其他神经退行性疾病。
Alzheimer's disease (AD) is a heterogeneous, multifactorial neurodegenerative disorder characterized by beta-amyloid, pathologic tau, and neurodegeneration. There are no effective treatments for Alzheimer's disease at a late stage, urging for early intervention. However, existing statistical inference approaches of AD subtype identification ignore the pathological domain knowledge, which could lead to ill-posed results that are sometimes inconsistent with the essential neurological principles. Integrating systems biology modeling with machine learning, we propose a novel pathology steered stratification network (PSSN) that incorporates established domain knowledge in AD pathology through a reaction-diffusion model, where we consider non-linear interactions between major biomarkers and diffusion along brain structural network. Trained on longitudinal multimodal neuroimaging data, the biological model predicts long-term trajectories that capture individual progression pattern, filling in the gaps between sparse imaging data available. A deep predictive neural network is then built to exploit spatiotemporal dynamics, link neurological examinations with clinical profiles, and generate subtype assignment probability on an individual basis. We further identify an evolutionary disease graph to quantify subtype transition probabilities through extensive simulations. Our stratification achieves superior performance in both inter-cluster heterogeneity and intra-cluster homogeneity of various clinical scores. Applying our approach to enriched samples of aging populations, we identify six subtypes spanning AD spectrum, where each subtype exhibits a distinctive biomarker pattern that is consistent with its clinical outcome. PSSN provides insights into pre-symptomatic diagnosis and practical guidance on clinical treatments, which may be further generalized to other neurodegenerative diseases.