论文标题
DP颜色功能和规范标签的边界
Bounds for DP color function and canonical labelings
论文作者
论文摘要
DP颜色是列表着色的概括,该列表着色是由Dvočhk和Postle引入的。令$ \ Mathcal {h} =(l,h)$为Graph $ g $和$ p_ {dp}(g,\ mathcal {h})$是$ \ MATHCAL {H} $ - $ G $的颜色的数量。由Kaul和Mudrock引入的DP Color函数$ P_ {DP}(G,M)$ $ G $是$ P_ {DP}(g,\ \ \ m nathcal {h})$的最低值,其中最低限制了所有可能的$ m $ m $ - fold covers $ fold covers $ \ nathcal $ \ \ m nathcal $ \ g $。对于$ n $ vertex连接的图形的家族,可以从考尔和穆德岩的两个结果中推断出树木最大化DP颜色功能。在本文中,我们获得了$ n $ vertex $ 2 $连接图的DP颜色功能的紧密上限。本文的另一个问题是封面中的规范标签。众所周知,如果图$ g $的$ m $ fold覆盖$ \ nathcal {h} $具有规范的标签,则具有$ p_ {dp}(g,\ \ m artercal {h})= p(g,m)$ p(g,m)$ p(g,m)$是$ g $ $ g $的彩色。但是,这个结论的相反陈述并不总是正确的。我们举例说,对于一些$ m $和$ g $,存在$ g $的$ m $ fold cover $ \ mathcal {h} $ of $ g $,使得$ p_ {dp}(g,g,\ nathcal {h})= p(g,m)$我们还证明,当$ g $是一个单车图或theta图时,对于每个$ m \ geq 3 $,如果$ p_ {dp}(g,g,\ nathcal {h})= p(g,m)$,则$ \ nathcal {h} $具有佳能标记。
The DP-coloring is a generalization of the list coloring, introduced by Dvořák and Postle. Let $\mathcal{H}=(L,H)$ be a cover of a graph $G$ and $P_{DP}(G,\mathcal{H})$ be the number of $\mathcal{H}$-colorings of $G$. The DP color function $P_{DP}(G,m)$ of $G$, introduced by Kaul and Mudrock, is the minimum value of $P_{DP}(G,\mathcal{H})$ where the minimum is taken over all possible $m$-fold covers $\mathcal{H}$ of $G$. For the family of $n$-vertex connected graphs, one can deduce that trees maximize the DP color function, from two results of Kaul and Mudrock. In this paper we obtain tight upper bounds for the DP color function of $n$-vertex $2$-connected graphs. Another concern in this paper is the canonical labeling in a cover. It is well known that if an $m$-fold cover $\mathcal{H}$ of a graph $G$ has a canonical labeling, then $P_{DP}(G,\mathcal{H})=P(G,m)$ in which $P(G,m)$ is the chromatic polynomial of $G$. However the converse statement of this conclusion is not always true. We give examples that for some $m$ and $G$, there exists an $m$-fold cover $\mathcal{H}$ of $G$ such that $P_{DP}(G,\mathcal{H})=P(G,m)$, but $\mathcal{H}$ has no canonical labelings. We also prove that when $G$ is a unicyclic graph or a theta graph, for each $m\geq 3$, if $P_{DP}(G,\mathcal{H})=P(G,m)$, then $\mathcal{H}$ has a canonical labeling.