论文标题
ControlVae:基于模型的基于物理角色的生成控制器的学习
ControlVAE: Model-Based Learning of Generative Controllers for Physics-Based Characters
论文作者
论文摘要
在本文中,我们介绍了ControlVae,这是一种基于变异自动编码器(VAE)的学习生成运动控制策略的新型模型框架。我们的框架可以从各种无组织的运动序列中学习丰富而灵活的潜在技能表现,并从各种无组织的运动序列中学习具有技能条件的生成控制策略,这可以通过在潜在空间中取样来产生现实的人类行为,并允许高级控制策略重复使用学识渊博的技能,以完成各种下议院任务。在ControlVae的培训中,我们采用可学习的世界模型来直接监督潜在空间和控制政策。这个世界模型有效地捕获了模拟系统的未知动态,从而实现了高级下游任务的有效模型学习。我们还学习了基于VAE的生成控制策略中的国家条件先验分布,该分布产生了一种嵌入的技能,以优于下游任务中的非条件先验。我们使用各种任务集证明了ControlVae的有效性,该任务允许对模拟字符进行现实和互动控制。
In this paper, we introduce ControlVAE, a novel model-based framework for learning generative motion control policies based on variational autoencoders (VAE). Our framework can learn a rich and flexible latent representation of skills and a skill-conditioned generative control policy from a diverse set of unorganized motion sequences, which enables the generation of realistic human behaviors by sampling in the latent space and allows high-level control policies to reuse the learned skills to accomplish a variety of downstream tasks. In the training of ControlVAE, we employ a learnable world model to realize direct supervision of the latent space and the control policy. This world model effectively captures the unknown dynamics of the simulation system, enabling efficient model-based learning of high-level downstream tasks. We also learn a state-conditional prior distribution in the VAE-based generative control policy, which generates a skill embedding that outperforms the non-conditional priors in downstream tasks. We demonstrate the effectiveness of ControlVAE using a diverse set of tasks, which allows realistic and interactive control of the simulated characters.