论文标题

刺破log gromov-witten理论中的异常不变性

Birational Invariance in Punctured Log Gromov-Witten Theory

论文作者

Johnston, Samuel

论文摘要

给定一个日志平滑方案$(x,d)$和logétale修改$(\ tilde {x},\ tilde {d})\ rightarrow(x,d)$,我们将$(\ tilde {x},\ tilde $ punited $ punited $ punting $ punting grom to punting grom to punting grom to punting grom to punting grom to punting grom to punting grom to punting grom to punting grom,在“ log gromov-witten理论中的生育不变性”中,在非函数环境中概括了阿布拉莫维奇和明智的结果。使用主要比较结果,我们分别显示了对数镜子代数和规范散射图的对数的形式,该图分别以“固有的镜子对称性”和“规范的壁结构和内在的镜子对称性”形式。

Given a log smooth scheme $(X,D)$, and a log étale modification $(\tilde{X},\tilde{D}) \rightarrow (X,D)$, we relate the punctured Gromov-Witten theory of $(\tilde{X},\tilde{D})$ to the punctured Gromov-Witten theory of $(X,D)$, generalizing results of Abramovich and Wise in the non-punctured setting in "Birational invariance in log Gromov-Witten Theory". Using the main comparison results, we show a form of log étale invariance for the logarithmic mirror algebras and canonical scattering diagrams constructed in "Intrinsic Mirror Symmetry" and "The Canonical Wall Structure and Intrinsic Mirror Symmetry" respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源