论文标题
刺破log gromov-witten理论中的异常不变性
Birational Invariance in Punctured Log Gromov-Witten Theory
论文作者
论文摘要
给定一个日志平滑方案$(x,d)$和logétale修改$(\ tilde {x},\ tilde {d})\ rightarrow(x,d)$,我们将$(\ tilde {x},\ tilde $ punited $ punited $ punting $ punting grom to punting grom to punting grom to punting grom to punting grom to punting grom to punting grom to punting grom to punting grom,在“ log gromov-witten理论中的生育不变性”中,在非函数环境中概括了阿布拉莫维奇和明智的结果。使用主要比较结果,我们分别显示了对数镜子代数和规范散射图的对数的形式,该图分别以“固有的镜子对称性”和“规范的壁结构和内在的镜子对称性”形式。
Given a log smooth scheme $(X,D)$, and a log étale modification $(\tilde{X},\tilde{D}) \rightarrow (X,D)$, we relate the punctured Gromov-Witten theory of $(\tilde{X},\tilde{D})$ to the punctured Gromov-Witten theory of $(X,D)$, generalizing results of Abramovich and Wise in the non-punctured setting in "Birational invariance in log Gromov-Witten Theory". Using the main comparison results, we show a form of log étale invariance for the logarithmic mirror algebras and canonical scattering diagrams constructed in "Intrinsic Mirror Symmetry" and "The Canonical Wall Structure and Intrinsic Mirror Symmetry" respectively.