论文标题

级别的supermmetric soliton $ \ mathcal {n} = 8 $ supergravity

Supersymmetric solitons in gauged $\mathcal{N}=8$ supergravity

论文作者

Anabalón, Andrés, Gallerati, Antonio, Ross, Simon, Trigiante, Mario

论文摘要

我们考虑ADS $ _ {4} $中的Soliton解决方案,并在一个周期内进行平坦的切片和Wilson循环。我们研究相结构并找到基态,并确定超对称溶液是威尔逊循环的函数。我们在标量$ \ MATHCAL {n} = 8 $ SuperGravity的标量场截断的上下文中工作,其中所有dilaton都相等,并且所有轴都消失在Stu模型中。在这个理论中,我们构建了由两个威尔逊线参数化的新的孤子解决方案。我们发现超对称溶液的变性。我们还表明,对于替代边界条件,存在一种非对称的孤子溶液,其能量低于超对称性溶液。

We consider soliton solutions in AdS$_{4}$ with a flat slicing and Wilson loops around one cycle. We study the phase structure and find the ground state and identify supersymmetric solutions as a function of the Wilson loops. We work in the context of a scalar field truncation of gauged $\mathcal{N}=8$ supergravity, where all the dilatons are equal and all the axions vanish in the STU model. In this theory, we construct new soliton solutions parameterized by two Wilson lines. We find that there is a degeneracy of supersymmetric solutions. We also show that, for alternate boundary conditions, there exists a non-supersymmetric soliton solution with energy lower than the supersymmetric one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源