论文标题

VLT/Sphere IFS的频谱立方体提取:开源管道,具有完整的正向建模和提高灵敏度

Spectral cube extraction for the VLT/SPHERE IFS: Open-source pipeline with full forward modeling and improved sensitivity

论文作者

Samland, Matthias, Brandt, Timothy, Milli, Julien, Delorme, Philippe, Vigan, Arthur

论文摘要

我们提出了一个新的开源数据还原管道,以从RAW Sphere Integral-Field光谱仪(IFS)数据重建光谱数据库。该管道用Python编写,并基于为Charis IFS开发的管道。它引入了球体数据分析的几种改进,这些改进最终会在后处理敏感性方面取得重大改善。我们首先使用新数据来测量四个激光校准波长处的球体列列点扩散功能(PSF)。这些Lenslet PSF使我们能够向前模型球数据,使用最小二乘拟合提取光谱,并使用测量的镜头PSF去除光谱串扰。我们的方法还减少了光谱和空间所需的插值数量,并可以保留球体中原始的六边形透镜几何形状。在最小二乘提取的情况下,未执行数据插值。我们在直接成像的系外行星51 ERI B上证明了这条新管道,并在HD 2133的热白矮人伴侣的观察结果上进行了观察。HD2133B的提取光谱与理论模型匹配,证明了分光光度计测量值校准,这是很好的百分之几。与Sphere Data Data Center重建的立方体相比,对两个51 ERI B数据集的后处理表明,2015年和2017年数据的灵敏度的中位数分别提高了80%和30%。对于较差的观察条件,可以看到最大的改进。新的Sphere管道需要不到三分钟的时间才能在现代笔记本电脑上生产数据立方体,这使得对所有Sphere IF数据进行重新处理。

We present a new open-source data-reduction pipeline to reconstruct spectral data cubes from raw SPHERE integral-field spectrograph (IFS) data. The pipeline is written in Python and based on the pipeline that was developed for the CHARIS IFS. It introduces several improvements to SPHERE data analysis that ultimately produce significant improvements in postprocessing sensitivity. We first used new data to measure SPHERE lenslet point spread functions (PSFs) at the four laser calibration wavelengths. These lenslet PSFs enabled us to forward-model SPHERE data, to extract spectra using a least-squares fit, and to remove spectral crosstalk using the measured lenslet PSFs. Our approach also reduces the number of required interpolations, both spectral and spatial, and can preserve the original hexagonal lenslet geometry in the SPHERE IFS. In the case of least-squares extraction, no interpolation of the data is performed. We demonstrate this new pipeline on the directly imaged exoplanet 51 Eri b and on observations of the hot white dwarf companion to HD 2133. The extracted spectrum of HD 2133B matches theoretical models, demonstrating spectrophotometric calibration that is good to a few percent. Postprocessing on two 51 Eri b data sets demonstrates a median improvement in sensitivity of 80% and 30% for the 2015 and 2017 data, respectively, compared to the use of cubes reconstructed by the SPHERE Data Center. The largest improvements are seen for poorer observing conditions. The new SPHERE pipeline takes less than three minutes to produce a data cube on a modern laptop, making it practical to reprocess all SPHERE IFS data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源