论文标题
部分可观测时空混沌系统的无模型预测
Exact and approximation algorithms for sensor placement against DDoS attacks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In a DDoS attack (Distributed Denial of Service), an attacker gains control of many network users through a virus. Then the controlled users send many requests to a victim, leading to its resources being depleted. DDoS attacks are hard to defend because of their distributed nature, large scale and various attack techniques. One possible mode of defense is to place sensors in a network that can detect and stop an unwanted request. However, such sensors are expensive so there is a natural question as to the minimum number of sensors and the optimal placement required to get the necessary level of safety. Presented below are two mixed integer models for optimal sensor placement against DDoS attacks. Both models lead to a trade-off between the number of deployed sensors and the volume of uncontrolled flow. Since the above placement problems are NP-hard, two efficient heuristics are designed, implemented and compared experimentally with exact mixed integer linear programming solvers.