论文标题
坡道:快速越野地面机器人导航的风险意识映射和规划管道
RAMP: A Risk-Aware Mapping and Planning Pipeline for Fast Off-Road Ground Robot Navigation
论文作者
论文摘要
在3D地形中快速地面机器人导航中的一个主要挑战是平衡机器人速度和安全性。最近的工作表明,2.5D地图(具有其他3D信息的2D表示形式)是实时安全和快速计划的理想选择。但是,由于未知空间的不准确表示,通过射线跟踪生成2D占用网格的普遍方法使生成的地图不安全。此外,现有的计划者(例如MPPI)并未分别考虑已知的自由和未知空间中的速度,从而导致整体计划较慢。这里提出的坡道管道使用新的映射和计划方法解决了这些问题。这项工作首先提出了持续的空间内存的地面通货膨胀,这是从分类点云中产生准确的占用网格图的一种方式。然后,我们提出了一个基于MPPI的计划者,具有嵌入式变异性,以最大程度地提高已知的自由空间的速度,同时将警示渗透到未知空间中。最后,我们将此映射和规划管道与3D地形产生的风险约束集成在一起,并验证它可以使用模拟和硬件演示来快速安全地导航。
A key challenge in fast ground robot navigation in 3D terrain is balancing robot speed and safety. Recent work has shown that 2.5D maps (2D representations with additional 3D information) are ideal for real-time safe and fast planning. However, the prevalent approach of generating 2D occupancy grids through raytracing makes the generated map unsafe to plan in, due to inaccurate representation of unknown space. Additionally, existing planners such as MPPI do not consider speeds in known free and unknown space separately, leading to slower overall plans. The RAMP pipeline proposed here solves these issues using new mapping and planning methods. This work first presents ground point inflation with persistent spatial memory as a way to generate accurate occupancy grid maps from classified pointclouds. Then we present an MPPI-based planner with embedded variability in horizon, to maximize speed in known free space while retaining cautionary penetration into unknown space. Finally, we integrate this mapping and planning pipeline with risk constraints arising from 3D terrain, and verify that it enables fast and safe navigation using simulations and hardware demonstrations.