论文标题

对数符号总和的近似离散熵单调性

Approximate Discrete Entropy Monotonicity for Log-Concave Sums

论文作者

Gavalakis, Lampros

论文摘要

事实证明,Tao(2010)的猜想对于整数上的log-conconcave随机变量是正确的:对于$ n \ geq 1 $,如果$ x_1,\ ldots,x_n $是i.i.d. integer-valued,log-concave随机变量,然后$$ h(x_1+\ cdots+x_ {n+1})\ geq h(x_1+\ cdots+x_ {n})+\ \ \ \\ frac {1} {2} {2} {2} {2} \ logl { $$ as $ h(x_1)\ to \ infty $,其中$ h $表示(离散的)香农熵。通过表明$ u_1,\ ldots,u_n $是$(0,1)$上的独立连续制度,然后$$ H(x_1+\ cdots+x_n+x_n+x_n+u_1+cdots+cdots+u_n)= h(x_1+\ cdots+x_n)+o(x_1+x_n)+o(x_1+cdots+o_n) $ H $代表差分熵。提供了$ O(1)$ - 条款的明确界限。

It is proven that a conjecture of Tao (2010) holds true for log-concave random variables on the integers: For every $n \geq 1$, if $X_1,\ldots,X_n$ are i.i.d. integer-valued, log-concave random variables, then $$ H(X_1+\cdots+X_{n+1}) \geq H(X_1+\cdots+X_{n}) + \frac{1}{2}\log{\Bigl(\frac{n+1}{n}\Bigr)} - o(1) $$ as $H(X_1) \to \infty$, where $H$ denotes the (discrete) Shannon entropy. The problem is reduced to the continuous setting by showing that if $U_1,\ldots,U_n$ are independent continuous uniforms on $(0,1)$, then $$ h(X_1+\cdots+X_n + U_1+\cdots+U_n) = H(X_1+\cdots+X_n) + o(1) $$ as $H(X_1) \to \infty$, where $h$ stands for the differential entropy. Explicit bounds for the $o(1)$-terms are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源