论文标题

十年来是什么?随着时间的流逝而变化

What's in a Decade? Transforming Faces Through Time

论文作者

Chen, Eric Ming, Sun, Jin, Khandelwal, Apoorv, Lischinski, Dani, Snavely, Noah, Averbuch-Elor, Hadar

论文摘要

一个人如何在十年内视觉表征人们?在这项工作中,我们通过时间数据集组装了面孔,该数据集包含每十年的一千多个肖像图像,跨越了1880年代至今。使用我们的新数据集,我们提出了一个框架,以跨时间重新合成肖像的图像,以想象如果在其他几十年中拍摄了特定十年的肖像可能看起来是什么样的。我们的框架优化了一个十年的发电机家族,这些家族揭示了与众不同的变化,这些变化与众不同,例如不同的发型或化妆,同时保持了输入肖像的身份。实验表明,与最先进的图像到图像翻译方法以及基于属性和语言指导的肖像编辑模型相比,我们的方法在整个时间的肖像重新合成方面更有效。我们的代码和数据将在https://facesthroughtime.github.io上找到。

How can one visually characterize people in a decade? In this work, we assemble the Faces Through Time dataset, which contains over a thousand portrait images from each decade, spanning the 1880s to the present day. Using our new dataset, we present a framework for resynthesizing portrait images across time, imagining how a portrait taken during a particular decade might have looked like, had it been taken in other decades. Our framework optimizes a family of per-decade generators that reveal subtle changes that differentiate decade--such as different hairstyles or makeup--while maintaining the identity of the input portrait. Experiments show that our method is more effective in resynthesizing portraits across time compared to state-of-the-art image-to-image translation methods, as well as attribute-based and language-guided portrait editing models. Our code and data will be available at https://facesthroughtime.github.io

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源