论文标题

子空间对比度多视图聚类

Subspace-Contrastive Multi-View Clustering

论文作者

Lele, Fu, Lei, Zhang, Jinghua, Yang, Chuan, Chen, Chuanfu, Zhang, Zibin, Zheng

论文摘要

大多数多视图聚类方法受到浅层模型的限制,没有声音非线性信息感知能力,或者无法有效利用隐藏在不同视图中的互补信息。为了解决这些问题,我们提出了一种新颖的子空间对比度多视图聚类(SCMC)方法。具体而言,SCMC利用特定视图的自动编码器将原始的多视图数据映射到感知其非线性结构的紧凑特征中。考虑到来自不同模式的数据的巨大语义差距,我们采用子空间学习将多视图数据统一到联合语义空间中,即嵌入的紧凑型特征通过多个自我表达层传递,以分别学习子空间表示。为了增强可区分性并有效挖掘各种子空间表示的互补性,我们使用对比度策略来最大程度地提高正对之间的相似性,同时区分负面对。因此,制定了加权融合方案,以最初学习一致的亲和力矩阵。此外,我们采用图表正则化来编码不同子空间内的局部几何结构,以进一步微调实例之间的适当亲和力。为了证明所提出的模型的有效性,我们在八个挑战数据集上进行了大量比较实验,实验结果表明,SCMC的表现优于现有的浅层和深层多视图聚类方法。

Most multi-view clustering methods are limited by shallow models without sound nonlinear information perception capability, or fail to effectively exploit complementary information hidden in different views. To tackle these issues, we propose a novel Subspace-Contrastive Multi-View Clustering (SCMC) approach. Specifically, SCMC utilizes view-specific auto-encoders to map the original multi-view data into compact features perceiving its nonlinear structures. Considering the large semantic gap of data from different modalities, we employ subspace learning to unify the multi-view data into a joint semantic space, namely the embedded compact features are passed through multiple self-expression layers to learn the subspace representations, respectively. In order to enhance the discriminability and efficiently excavate the complementarity of various subspace representations, we use the contrastive strategy to maximize the similarity between positive pairs while differentiate negative pairs. Thus, a weighted fusion scheme is developed to initially learn a consistent affinity matrix. Furthermore, we employ the graph regularization to encode the local geometric structure within varying subspaces for further fine-tuning the appropriate affinities between instances. To demonstrate the effectiveness of the proposed model, we conduct a large number of comparative experiments on eight challenge datasets, the experimental results show that SCMC outperforms existing shallow and deep multi-view clustering methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源