论文标题
部分可观测时空混沌系统的无模型预测
Self-explaining deep models with logic rule reasoning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We present SELOR, a framework for integrating self-explaining capabilities into a given deep model to achieve both high prediction performance and human precision. By "human precision", we refer to the degree to which humans agree with the reasons models provide for their predictions. Human precision affects user trust and allows users to collaborate closely with the model. We demonstrate that logic rule explanations naturally satisfy human precision with the expressive power required for good predictive performance. We then illustrate how to enable a deep model to predict and explain with logic rules. Our method does not require predefined logic rule sets or human annotations and can be learned efficiently and easily with widely-used deep learning modules in a differentiable way. Extensive experiments show that our method gives explanations closer to human decision logic than other methods while maintaining the performance of deep learning models.