论文标题
部分可观测时空混沌系统的无模型预测
The fractional $p$-Laplacian on hyperbolic spaces
论文作者
论文摘要
我们提出了分数$ p $ -laplacian $( - δ_ {\ mathbb {h}^{n}}})^{s} _ {p} $,$ 0 <s <1 $,$ p> 1 $的三个等效定义。常数的显式值使我们能够研究$ p $ -laplacian与$ p $ -laplacian的收敛性,为$ s \至1^{ - } $。
We present three equivalent definitions of the fractional $p$-Laplacian $(-Δ_{\mathbb{H}^{n}})^{s}_{p}$, $0<s<1$, $p>1$, with normalizing constants, on hyperbolic spaces. The explicit values of the constants enable us to study the convergence of the fractional $p$-Laplacian to the $p$-Laplacian as $s \to 1^{-}$.