论文标题
使用大语言模型引导多种语语义解析器
Bootstrapping Multilingual Semantic Parsers using Large Language Models
论文作者
论文摘要
尽管通过预训练的多语言模型证明了跨语性的概括,但跨多种语言传输英语数据集的翻译训练范式仍然是培训特定任务的多语言模型的关键机制。但是,对于许多低资源语言,可靠的翻译服务的可用性需要大量昂贵的人类宣传的翻译对。此外,由于特定于任务的输入文本和用于训练翻译模型的通用文本之间的域不匹配,翻译服务可能会继续变得脆弱。对于多语种语义解析,我们演示了大型语言模型(LLMS)提供的有效性和灵活性,可通过几乎没有弹奏提示将英语数据集转化为多种语言。通过在两个公共数据集(MTOP和大规模)上进行了大量比较,涵盖了50种语言和几个领域,我们表明,使用LLMS翻译数据的方法优于50种语言中41种强大的翻译训练基线。我们研究了关键的设计选择,这些选择可以通过提示的LLMS实现更有效的多语言数据翻译。
Despite cross-lingual generalization demonstrated by pre-trained multilingual models, the translate-train paradigm of transferring English datasets across multiple languages remains to be a key mechanism for training task-specific multilingual models. However, for many low-resource languages, the availability of a reliable translation service entails significant amounts of costly human-annotated translation pairs. Further, translation services may continue to be brittle due to domain mismatch between task-specific input text and general-purpose text used for training translation models. For multilingual semantic parsing, we demonstrate the effectiveness and flexibility offered by large language models (LLMs) for translating English datasets into several languages via few-shot prompting. Through extensive comparisons on two public datasets, MTOP and MASSIVE, spanning 50 languages and several domains, we show that our method of translating data using LLMs outperforms a strong translate-train baseline on 41 out of 50 languages. We study the key design choices that enable more effective multilingual data translation via prompted LLMs.