论文标题
跨尺度上下文提取的散列散布图像二进制编码
Cross-Scale Context Extracted Hashing for Fine-Grained Image Binary Encoding
论文作者
论文摘要
由于有效的计算和低存储成本,通过将高维图像数据编码到二进制代码中,深层散列已被广泛应用于大规模图像检索任务。由于二进制代码不包含浮点功能那么多信息,因此二进制编码的本质是保留主要环境以保证检索质量。但是,现有的哈希方法对抑制冗余背景信息有很大的限制,并通过简单的符号功能准确地编码从欧几里得空间到锤击空间。为了解决这些问题,本文提出了跨尺度上下文提取的哈希网络(CSCE-net)。首先,我们设计了一个两个分支机构框架,以捕获高级全球语义信息,以捕获细粒度的本地信息。此外,注意力指导的信息提取模块(AIE)是在两个分支之间引入的,这抑制了与全球滑动窗口配合的低环境信息的区域。与以前的方法不同,我们的CSCE-NET学习了与内容相关的动态标志功能(DSF)来替换原始的简单符号功能。因此,提出的CSCE-NET对上下文敏感,并且能够在准确的图像二进制编码上表现良好。我们进一步证明,我们的CSCE-NET优于现有的哈希方法,从而改善了标准基准的检索性能。
Deep hashing has been widely applied to large-scale image retrieval tasks owing to efficient computation and low storage cost by encoding high-dimensional image data into binary codes. Since binary codes do not contain as much information as float features, the essence of binary encoding is preserving the main context to guarantee retrieval quality. However, the existing hashing methods have great limitations on suppressing redundant background information and accurately encoding from Euclidean space to Hamming space by a simple sign function. In order to solve these problems, a Cross-Scale Context Extracted Hashing Network (CSCE-Net) is proposed in this paper. Firstly, we design a two-branch framework to capture fine-grained local information while maintaining high-level global semantic information. Besides, Attention guided Information Extraction module (AIE) is introduced between two branches, which suppresses areas of low context information cooperated with global sliding windows. Unlike previous methods, our CSCE-Net learns a content-related Dynamic Sign Function (DSF) to replace the original simple sign function. Therefore, the proposed CSCE-Net is context-sensitive and able to perform well on accurate image binary encoding. We further demonstrate that our CSCE-Net is superior to the existing hashing methods, which improves retrieval performance on standard benchmarks.