论文标题

POOLLINE:将拼车建模为GTF中的短暂线,以有效与公共交通集成

PoolLines: Modeling Carpooling as Ephemeral Lines in GTFS for effective integration with Public Transit

论文作者

Chaabouni, Youssef, Araldo, Andrea, de Palma, André, Arib, Souhila

论文摘要

在拼车系统中,一组拥有私人汽车的驾驶员可以接受小弯路,以接送其他车手。但是,拼车被广泛用于长途旅行,可以在几天前进行骑手驾驶员匹配。使拼车成为日常通勤的可行选择更具挑战性,因为旅行较短,并且按比例地,驾驶员容忍的绕道距离更加紧。结果,找到分享近距离起源,目的地和出发时间的骑手和驾驶员的可能性较小,这限制了潜在的匹配。在本文中,我们提出了一个集成系统,其中拼车匹配与公共交通(PT)计划同步,以便在第一英里担任PT的饲养服务。提出驾驶员弯路端向PT选定的站点,该站被用作合并点,从而增加了匹配概率。我们提出了一种计算有效的方法,用于在单个通用交通供稿规范数据库中表示PT计划和驱动程序轨迹,该数据库允许使用任何货架计划人员使用任何任何架子来计算多模式骑手旅行。我们在俄勒冈州波特兰市的大都市地区展示了我们的方法,考虑了8K随机产生的旅行。我们展示了集成系统的好处。我们发现,有10%的骑手发现与现状有关的可行匹配,在这种情况下,拼车和PT分别进行操作。我们将代码作为开源。

In carpooling systems, a set of drivers owning a private car can accept a small detour to pick-up and drop-off other riders. However, carpooling is widely used for long-distance trips, where rider-driver matching can be done days ahead. Making carpooling a viable option for daily commute is more challenging, as trips are shorter and, proportionally, the detours tolerated by drivers are more tight. As a consequence, finding riders and drivers sharing close-enough origins, destinations and departure time is less likely, which limits potential matching. In this paper we propose an Integrated System, where carpooling matching is synchronized with Public Transit (PT) schedules, so as to serve as a feeder service to PT in the first mile. Driver detours are proposed towards PT selected stations, which are used as consolidation points, thus increasing matching probability. We present a computationally efficient method to represent PT schedules and drivers trajectory in a single General Transit Feed Specification database, which allows to compute multimodal rider journeys using any off the shelf planners. We showcase our approach in the metropolitan area of Portland, Oregon, considering 8k randomly generated trips. We show the benefits of our Integrated System. We find that 10% more riders find a feasible matching with respect to the status quo, where carpooling and PT are operated separately. We release our code as open source.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源