论文标题

标量场理论,Chern-Simons重力和骨弦理论的多胶质约束分析

Multisymplectic Constraint Analysis of Scalar Field Theories, Chern-Simons Gravity, and Bosonic String Theory

论文作者

Gomis, Joaquim, Guerra IV, Arnoldo, Román-Roy, Narciso

论文摘要

De Donder的(前)多透性几何形式 - Weyl形式主义的现场理论是针对各种现场理论的进一步开发的,包括从规范的Klein-Gordon动作中的标量现场理论,电气和磁性的Carrollian Carrollian量表理论,Bosollian Scuarton Cliencon Theories,Bosonic contrion,来自Nambu-Goto Action的Bosolic scalion field strimention,以及NAMBU-GOTO ACTION,以及$ 2+1+1 $ GRAVERTY AIS CHERN-SIMONS。标量田间理论的拉格朗日人和$ 2+1 $ chern-simons重力在de donder中被发现是单数 - weyl Sense,而nambu-goto lagrangian被发现是常规的。此外,解释并应用于这些理论的奇异场理论的预闭合相位空间的约束结构。最后,研究了在存在约束的情况下如何在多核相位空间上开发对称性的。

The (pre)multisymplectic geometry of the De Donder--Weyl formalism for field theories is further developed for a variety of field theories including a scalar field theory from the canonical Klein-Gordon action, the electric and magnetic Carrollian scalar field theories, bosonic string theory from the Nambu-Goto action, and $2+1$ gravity as a Chern-Simons theory. The Lagrangians for the scalar field theories and for $2+1$ Chern-Simons gravity are found to be singular in the De Donder--Weyl sense while the Nambu-Goto Lagrangian is found to be regular. Furthermore, the constraint structure of the premultisymplectic phase spaces of singular field theories is explained and applied to these theories. Finally, it is studied how symmetries are developed on the multisymplectic phase spaces in the presence of constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源