论文标题
任意2D晶格上量子自旋系统的Jordan-Wigner效率:一种共同的Chern-Simons方法
Jordan-Wigner fermionization of quantum spin systems on arbitrary 2D lattices: A mutual Chern-Simons approach
论文作者
论文摘要
已经开发了各种分析方法,用于研究二维的量子自旋系统,著名的方法是自旋波,奴隶玻色/费米恩parton构建体以及具有一对一的面部和顶点的晶格,2d Jordan-Wigner(JW)效率。从理论上讲,通过Chern-Simons(CS)通量附件实现了JW费米化。为了正确对晶格量子旋转的正确费用 - $ 1/2 $磁铁,有必要遵守所交换的互惠率(任何人)统计数据 - 如果费米尼克(Fermionic Matter)仅将其仅在lattice Gauge场上进行任意的2D晶格,则不可能在任意的2D晶格上实施。扩大仪表的自由度以包括双晶格,可以构建一致的相互Chern-Simons田间理论。在这里,我们提出了一个相互的CS理论,其中显微镜(自旋)自由度表示为晶状体费尔米金物质,并与依赖局部几何形状的双晶格仪场的特定组合耦合。我们说明了这种方法在$ z $方向上使用强Zeeman字段的蜂窝基地模型的特性。我们的CS仪表理论框架提供了一种理解的理解,为什么在铁(抗)磁性基塔维相互作用的较低(较高)临界场上降解拓扑阶段。此外,我们观察到在$ z $方向上较高磁场上低兴趣的有效一维特征,我们也通过自旋波计算确认。
A variety of analytical approaches have been developed for the study of quantum spin systems in two dimensions, the notable ones being spin-waves, slave boson/fermion parton constructions, and for lattices with one-to-one local correspondence of faces and vertices, the 2D Jordan-Wigner (JW) fermionization. Field-theoretically, JW fermionization is implemented through Chern-Simons (CS) flux attachment. For a correct fermionization of lattice quantum spin-$1/2$ magnets, it is necessary that the fermions obey mutual bosonic (anyonic) statistics under exchange - this is not possible to implement on arbitrary 2D lattices if fermionic matter couples only to the lattice gauge fields. Enlarging the gauge degrees of freedom to include the dual lattice allows the construction of consistent mutual Chern-Simons field theories. Here we propose a mutual CS theory where the microscopic (spin) degrees of freedom are represented as lattice fermionic matter additionally coupled to specific combinations of dual lattice gauge fields that depend on the local geometry. We illustrate the use of this method for understanding the properties of a honeycomb Kitaev model subjected to a strong Zeeman field in the $z$-direction. Our CS gauge theory framework provides an understanding why the topological phase is degraded at lower (higher) critical fields for the ferro- (antiferro-) magnetic Kitaev interaction. Additionally, we observe an effectively one-dimensional character of the low-excitations at higher fields in the $z$-direction which we also confirm by spin-wave calculations.